Skip to main content

Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Abstract

The increasing world population entails a great necessity to produce large amounts of food, leading to an increase in organic waste. Unlike traditional agriculture, based on the circular sustainability, modern agriculture produces tons of residues, which are accumulated in landfills or, in some cases, burnt. Numerous studies have demonstrated that agricultural residues are rich in bioactive compounds, particularly phenolic compounds, with antioxidant properties. Antioxidant activity has been widely related with protective effects and prevention potential for different diseases. Also, the scavenging and protective effects of antioxidant compounds have shown a connection and synergistic effect with other biological properties, such as anti-inflammatory, anti-tumor, anti-aging, neuroprotective, cardio-protective, or antidiabetic. These compounds can be applied in several fields, including food, cosmetic, and pharmaceutical industry. This chapter will be focused on the interconnected bioactive properties and possible applications of plant-origin compounds with antioxidant potential to valorize different agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Young I, Woodside J (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186. https://doi.org/10.1201/b18539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brizi C, Santulli C, Micucci M, Budriesi R, Chiarini A, Aldinucci C, Frosini M (2016) Neuroprotective effects of Castanea sativa mill. Bark extract in human neuroblastoma cells subjected to oxidative stress. J Cell Biochem 117:510–520. https://doi.org/10.1002/jcb.25302

    Article  CAS  PubMed  Google Scholar 

  3. Gupta VK, Sharma SK (2006) Plants as natural antioxidants. Nat Prod Radiance 5:326–334. https://doi.org/10.1677/joe.0.0510359

    Article  Google Scholar 

  4. Papas AM (1999) Diet and antioxidant status. Food Chem Toxicol 37:999–1007. https://doi.org/10.1016/S0278-6915(99)00088-5

    Article  CAS  PubMed  Google Scholar 

  5. Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, González-Aguilar GA, Cuevas-Glory LF, Pérez-Pacheco E, Moo-Huchin VM (2017) Tropical fruit peel powders as functional ingredients: evaluation of their bioactive compounds and antioxidant activity. J Funct Foods 37:501–506. https://doi.org/10.1016/j.jff.2017.08.028

    Article  CAS  Google Scholar 

  6. Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants – a review. J Pharm Res 7:828–835. https://doi.org/10.1016/j.jopr.2013.10.001

    Article  CAS  Google Scholar 

  7. Pratt DE (1992) Natural antioxidants from plant material. In: Huang IMT, Ho CT, Lee CY (eds) Phenolic compounds in food and their effects on health. American Chemical Society, New York, pp 54–72

    Chapter  Google Scholar 

  8. Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z et al (2021) A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 271:129499. https://doi.org/10.1016/j.chemosphere.2020.129499

    Article  CAS  PubMed  Google Scholar 

  9. Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373. https://doi.org/10.1016/j.biopha.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479–3485. https://doi.org/10.1093/jn/134.12.3479s

    Article  Google Scholar 

  11. Ferretti G, Bacchetti T, Belleggia A, Neri D (2010) Cherry antioxidants: from farm to table. Molecules 15:6993–7005. https://doi.org/10.3390/molecules15106993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Barbosa PM, Ruviaro AR, Macedo GA (2018) Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Sci Biotechnol 27:1301–1309. https://doi.org/10.1007/s10068-018-0383-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Legua P, Melgarejo P, Abdelmajid H, Martínez JJ, Martínez R, Ilham H, Hafida H, Hernández F (2012) Total phenols and antioxidant capacity in 10 moroccan pomegranate varieties. J Food Sci 77:115–120. https://doi.org/10.1111/j.1750-3841.2011.02516.x

    Article  CAS  Google Scholar 

  14. Dini I, Tenore GC, Dini A (2008) Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds. Food Chem 107:613–621. https://doi.org/10.1016/j.foodchem.2007.08.053

    Article  CAS  Google Scholar 

  15. Akram S, Amir RM, Nadeem M, Sattar MU, Faiz F (2012) Antioxidant potential of black tea (Camellia Sinensis L.) – a review. J Food Sci 22:128–132

    Google Scholar 

  16. Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold AB, Haffner K, Baugerød H, Andersen LF et al (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471. https://doi.org/10.1093/jn/132.3.461

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal A, Sekhon L (2010) The role of antioxidant therapy in the treatment of male infertility. Hum Fertil 13:217–225. https://doi.org/10.3109/14647273.2010.532279

    Article  Google Scholar 

  18. Shulman JP, Hartnett ME (2018) Pharmacotherapy and ROP: going back to the basics. Asia Pac J Ophthalmol 7:130–135. https://doi.org/10.22608/APO.201853

    Article  CAS  Google Scholar 

  19. Davis JM, Auten RL (2010) Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 15:191–195. https://doi.org/10.1016/j.siny.2010.04.001

    Article  PubMed  Google Scholar 

  20. Hamid AA, Aiyelaagbe OO, Usman LA, Ameen OM, Lawal A (2010) Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chem 4:142–151

    CAS  Google Scholar 

  21. Singal AK, Jampana SC, Weinman SA (2011) Antioxidants as therapeutic agents for liver disease. Liver Int 31:1432–1448. https://doi.org/10.1111/j.1478-3231.2011.02604.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imosemi IO (2013) The role of antioxidants in cerebellar development: a review of literature. Int J Morphol 31:203–210. https://doi.org/10.4067/s0717-95022013000100034

    Article  Google Scholar 

  23. Li B (2009) An antioxidant metabolon at the red blood cell membrane. Concordia University, Montreal

    Google Scholar 

  24. Aune D (2019) Plant foods, antioxidant biomarkers, and the risk of cardiovascular disease, cancer, and mortality: a review of the evidence. Adv Nutr 10:S404–S421. https://doi.org/10.1093/advances/nmz042

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571. https://doi.org/10.1007/s00217-004-1012-4

    Article  CAS  Google Scholar 

  26. Olszowy-Tomczyk M (2020) Synergistic, antagonistic and additive antioxidant effects in the binary mixtures, vol 19. Springer Netherlands; ISBN 1110101909658

    Google Scholar 

  27. Siche R, Ávalos C, Arteaga H, Saldaña E, Vieira T (2016) Antioxidant capacity of binary and ternary mixtures of orange, grape and starfruit juices. Curr Nutr Food Sci 12:65–71

    Article  CAS  Google Scholar 

  28. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:3–6. https://doi.org/10.1093/ajcn/78.3.517s

    Article  Google Scholar 

  29. Liu R, Xu Y, Chang M, Tang L, Lu M, Liu R, Jin Q, Wang X (2021) Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem 343:128431. https://doi.org/10.1016/j.foodchem.2020.128431

    Article  CAS  PubMed  Google Scholar 

  30. Schroeder M, Becker E, Skibsted L (2006) Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. J Agric Food Chem 54:3445–3453. https://doi.org/10.1021/jf053141z

    Article  CAS  PubMed  Google Scholar 

  31. Tlais AZA, Fiorino GM, Polo A, Filannino P, Di Cagno R (2020) High-value compounds in fruit, vegetable and cereal byproducts: an overview of potential sustainable reuse and exploitation. Molecules 25:1–27. https://doi.org/10.3390/molecules25132987

    Article  CAS  Google Scholar 

  32. Castromonte M, Wacyk J, Valenzuela C (2020) Encapsulación de extractos antioxidantes desde sub-productos agroindustriales: una revisión. Rev Chil Nutr 47:836–847. https://doi.org/10.4067/s0717-75182020000500836

    Article  Google Scholar 

  33. Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules 19:14821–14842. https://doi.org/10.3390/molecules190914821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ayala-Zavala JF, Wang SY, Wang CY, González-Aguilar GA (2004) Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sci Technol 37:687–695. https://doi.org/10.1016/j.lwt.2004.03.002

    Article  CAS  Google Scholar 

  35. Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E (2019) Recovery of natural antioxidants from agro-industrial side streams through advanced extraction techniques. Molecules 24(23):4212

    Article  CAS  Google Scholar 

  36. Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC (2020) Bioactive potential of fruit and vegetable wastes. Adv Food Nutr Res 91:157–225. https://doi.org/10.1016/bs.afnr.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  37. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22:7–9. https://doi.org/10.3390/molecules22030358

    Article  CAS  Google Scholar 

  38. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627. https://doi.org/10.3390/ijms13078615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175. https://doi.org/10.1080/10408349891199356

    Article  CAS  Google Scholar 

  40. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G (2019) Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal Chem 118:248–263. https://doi.org/10.1016/j.trac.2019.05.037

    Article  CAS  Google Scholar 

  41. Boligon AA (2014) Technical evaluation of antioxidant activity. Med Chem (Los Angeles) 4:517–522. https://doi.org/10.4172/2161-0444.1000188

    Article  CAS  Google Scholar 

  42. Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614. https://doi.org/10.1021/jf020782a

    Article  CAS  PubMed  Google Scholar 

  43. Gunes R, Palabiyik I, Toker OS, Konar N, Kurultay S (2019) Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. J Food Eng 255:9–14. https://doi.org/10.1016/j.jfoodeng.2019.03.010

    Article  CAS  Google Scholar 

  44. Peschel W, Sánchez-Rabaneda F, Diekmann W, Plescher A, Gartzía I, Jiménez D, Lamuela-Raventós R, Buxaderas S, Codina C (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97:137–150. https://doi.org/10.1016/j.foodchem.2005.03.033

    Article  CAS  Google Scholar 

  45. Tremocoldi MA, Rosalen PL, Franchin M, Massarioli AP, Denny C, Daiuto ÉR, Paschoal JAR, Melo PS, De Alencar SM (2018) Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One 13:1–12. https://doi.org/10.1371/journal.pone.0192577

    Article  CAS  Google Scholar 

  46. Kosińska A, Karamać M, Estrella I, Hernández T, Bartolomé B, Dykes GA (2012) Phenolic compound profiles and antioxidant capacity of persea americana mill. Peels and seeds of two varieties. J Agric Food Chem 60:4613–4619. https://doi.org/10.1021/jf300090p

    Article  CAS  PubMed  Google Scholar 

  47. Morais DR, Rotta EM, Sargi SC, Schmidt EM, Bonafe EG, Eberlin MN, Sawaya ACHF, Visentainer JV (2015) Antioxidant activity, phenolics and UPLC-ESI(−)-MS of extracts from different tropical fruits parts and processed peels. Food Res Int 77:392–399. https://doi.org/10.1016/j.foodres.2015.08.036

    Article  CAS  Google Scholar 

  48. Rotta EM, de Morais DR, Biondo PBF, dos Santos VJ, Matsushita M, Visentainer JV (2016) Uso da casca do abacate (Persea americana) na formulação de chá: Um produto funcional contendo compostos fenólicos e atividade antioxidante. Acta Sci Technol 38:23–29. https://doi.org/10.4025/actascitechnol.v38i1.27397

    Article  Google Scholar 

  49. Dorta E, Lobo MG, González M (2013) Optimization of factors affecting extraction of antioxidants from mango seed. Food Bioprocess Technol 6:1067–1081. https://doi.org/10.1007/s11947-011-0750-0

    Article  CAS  Google Scholar 

  50. de Lourdes García-Magaña M, García HS, Bello-Pérez LA, Sáyago-Ayerdi SG, de Oca MMM (2013) Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv Ataulfo and Tommy Atkins). Plant Foods Hum Nutr 68:254–258. https://doi.org/10.1007/s11130-013-0364-y

    Article  CAS  Google Scholar 

  51. Sáyago-Ayerdi SG, Zamora-Gasga VM, Venema K (2019) Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res Int 118:89–95. https://doi.org/10.1016/j.foodres.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  52. Dorta E, González M, Lobo MG, Sánchez-Moreno C, de Ancos B (2014) Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res Int 57:51–60. https://doi.org/10.1016/j.foodres.2014.01.012

    Article  CAS  Google Scholar 

  53. Maisuthisakul P, Gordon MH (2009) Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem 117:332–341. https://doi.org/10.1016/j.foodchem.2009.04.010

    Article  CAS  Google Scholar 

  54. Vergara-Valencia N, Granados-Pérez E, Agama-Acevedo E, Tovar J, Ruales J, Bello-Pérez LA (2007) Fibre concentrate from mango fruit: characterization, associated antioxidant capacity and application as a bakery product ingredientx. Food Res Technol 40:722–729. https://doi.org/10.1016/j.lwt.2006.02.028

    Article  CAS  Google Scholar 

  55. Vulić JJ, Ćebović TN, Ćanadanović-Brunet JM, ĆEtković GS, Čanadanović VM, Djilas SM, Tumbas Šaponjac VT (2014) In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods 6:168–175. https://doi.org/10.1016/j.jff.2013.10.003

    Article  CAS  Google Scholar 

  56. Vulić JJ, Ćebović TN, Čanadanović VM, Ćetković GS, Djilas SM, Čanadanović-Brunet JM, Velićanski AS, Cvetković DD, Tumbas VT (2013) Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food Funct 4:713–721. https://doi.org/10.1039/c3fo30315b

    Article  CAS  PubMed  Google Scholar 

  57. Costa APD, Hermes VS, Rios AO, Flôres SH (2017) Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J Food Sci Technol 54:2050–2058. https://doi.org/10.1007/s13197-017-2642-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen V, Scarlett C (2016) Mass proportion, bioactive compounds and antioxidant capacity of carrot peel as affected by various solvents. Technologies 4:36. https://doi.org/10.3390/technologies4040036

    Article  Google Scholar 

  59. Chau CF, Chen CH, Lee MH (2004) Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions. LWT Food Sci Technol 37:155–160. https://doi.org/10.1016/j.lwt.2003.08.001

    Article  CAS  Google Scholar 

  60. Chhouk K, Uemori C, Wahyudiono Kanda H, Goto M (2017) Extraction of phenolic compounds and antioxidant activity from garlic husk using carbon dioxide expanded ethanol. Chem Eng Process Process Intensif 117:113–119. https://doi.org/10.1016/j.cep.2017.03.023

    Article  CAS  Google Scholar 

  61. Ichikawa M, Ryu K, Yoshida J, Ide N, Kodera Y, Sasaoka T, Rosen RT (2003) Identification of six phenylpropanoids from garlic skin as major antioxidants. J Agric Food Chem 51:7313–7317. https://doi.org/10.1021/jf034791a

    Article  CAS  PubMed  Google Scholar 

  62. Kallel F, Ellouz Chaabouni S (2017) Perspective of garlic processing wastes as low-cost substrates for production of high-added value products: a review. Environ Prog Sustain Energy 36:1765–1777. https://doi.org/10.1002/ep.12649

    Article  CAS  Google Scholar 

  63. Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Cools K, Terry LA, Esteban RM (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48–57. https://doi.org/10.1007/s11130-011-0212-x

    Article  CAS  PubMed  Google Scholar 

  64. Munir A, Sultana B, Bashir A, Ghaffar A, Munir B, Shar GA, Nazir A, Iqbal M (2018) Evaluation of antioxidant potential of vegetables waste. Pol J Environ Stud 27:947–952. https://doi.org/10.15244/pjoes/69944

    Article  CAS  Google Scholar 

  65. Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett 387:95–105. https://doi.org/10.1016/j.canlet.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  66. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  67. Sánchez C (2017) Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2:13–22. https://doi.org/10.1016/j.synbio.2016.12.001

    Article  PubMed  Google Scholar 

  68. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25. https://doi.org/10.1016/j.fct.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  69. Asif M (2015) Chemistry and antioxidant activity of plants containing some phenolic compounds. Chem Int 1:35–52. https://doi.org/10.6084/m9.figshare.7253357.v1

    Article  Google Scholar 

  70. Pereira AG, Fraga-Corral M, Garciá-Oliveira P, Jimenez-Lopez C, Lourenço-Lopes C, Carpena M, Otero P, Gullón P, Prieto MA, Simal-Gandara J (2020) Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food Funct 11:8493–8515. https://doi.org/10.1039/d0fo02147d

    Article  CAS  PubMed  Google Scholar 

  71. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278. https://doi.org/10.4161/oxim.2.5.9498

    Article  Google Scholar 

  72. de Giada M, de Reis Giada ML (2016) Food phenolic compounds: main classes, sources and their antioxidant power. In: Oxidative stress and chronic degenerative diseases – a role for antioxidants, vol i. Intech Publisher, London, UK, Ed., p 13

    Google Scholar 

  73. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375

    Article  CAS  Google Scholar 

  74. Urquiaga I, Leighton F (2000) Plant polyphenol antioxidants and oxidative stress. Biol Res 33:55–64. https://doi.org/10.4067/S0716-97602000000200004

    Article  CAS  PubMed  Google Scholar 

  75. Anwar H, Hussain G, Mustafa I (2018) Antioxidants from natural sources. In: Antioxidants in foods and its applications. Intech Publisher, London, UK

    Google Scholar 

  76. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li H (2017) Bin natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci 18:96

    Article  Google Scholar 

  77. Raja, Malar G (2017) Phytochemical screening, total flavonoid, total terpenoid and anti-inflammatory activity of aqueous stem extract of salacia oblonga. J Chem Pharm Sci 10:550–556

    Google Scholar 

  78. Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. In: Proceedings of the American Journal of Clinical Nutrition, vol 78. American Society for Nutrition, pp 550–556

    Google Scholar 

  79. Gilbert C (2013) What is vitamin A and why do we need it? Community Eye Health J 26:65–65

    Google Scholar 

  80. Codjia G (2001) Vitamin A food sources in Africa. Food Nutr Bull 22:357–360

    Article  Google Scholar 

  81. Varzaru I, Untea AE, Van I (2015) Determination of bioactive compounds with benefic potential on health in several medicinal plants. Rom Biotechnol Lett 20:10773–10783

    CAS  Google Scholar 

  82. Paciolla C, Fortunato S, Dipierro N, Paradiso A, De Leonardis S, Mastropasqua L, de Pinto MC (2019) Vitamin C in plants: from functions to biofortification. Antioxidants 8. https://doi.org/10.3390/antiox8110519

  83. Kasote DM, Katyare SS, Hedge MV, Bae H (2015) Significance of antioxidant potencial of plants and its relevance to therapeutic applications. Int J Biol Sci 11:982–991

    Article  CAS  Google Scholar 

  84. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  85. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488. https://doi.org/10.3390/nu6020466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burton GW, Ingold KU (1984) β-Carotene: an unusual type of lipid antioxidant. Science (80-) 224:569–573. https://doi.org/10.1126/science.6710156

    Article  CAS  Google Scholar 

  87. Xu GH, Chen JC, Liu DH, Zhang YH, Jiang P, Ye XQ (2008) Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J Food Sci 73. https://doi.org/10.1111/j.1750-3841.2007.00546.x

  88. Prasad AS (2014) Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 28:364–371

    Article  CAS  Google Scholar 

  89. Powell SR (2000) The antioxidant properties of zinc. In: Proceedings of the Journal of Nutrition, vol 130. American Institute of Nutrition

    Google Scholar 

  90. Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:1–10

    Article  CAS  Google Scholar 

  91. Tinggi U (2008) Selenium: its role as antioxidant in human health. In: Proceedings of the environmental health and preventive medicine, vol 13. BioMed Central, pp 102–108

    Google Scholar 

  92. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144. https://doi.org/10.1016/S0753-3322(03)00035-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li L, Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxidative Med Cell Longev 2018:1–11

    Google Scholar 

  94. Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  Google Scholar 

  95. Hussain A, Larsson H, Olsson ME, Kuktaite R, Grausgruber H, Johansson E (2012) Is organically produced wheat a source of tocopherols and tocotrienols for health food? In: Proceedings of the food chemistry, vol 132. Elsevier, pp 1789–1795

    Google Scholar 

  96. De Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267

    Article  Google Scholar 

  97. Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A (2020) Bioactive phenolic compounds from agri-food wastes: an update on green and sustainable extraction methodologies. Front Nutr 7:1–27. https://doi.org/10.3389/fnut.2020.00060

    Article  CAS  Google Scholar 

  98. Leyva-López N, Lizárraga-Velázquez CE, Hernández C, Sánchez-Gutiérrez EY (2020) Exploitation of agro-industrial waste as potential source of bioactive compounds for aquaculture. Foods 9:1–22. https://doi.org/10.3390/foods9070843

    Article  CAS  Google Scholar 

  99. Dang Y, Zhou T, Hao L, Cao J, Sun Y, Pan D (2019) In Vitro and in vivo studies on the angiotensin-converting enzyme inhibitory activity peptides isolated from broccoli protein hydrolysate. J Agric Food Chem 67:6757–6764. https://doi.org/10.1021/acs.jafc.9b01137

    Article  CAS  PubMed  Google Scholar 

  100. Wang W, Kang PM (2020) Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants 9:1–25. https://doi.org/10.3390/antiox9121292

    Article  CAS  Google Scholar 

  101. Afonso CB, Spickett CM (2019) Lipoproteins as targets and markers of lipoxidation. Redox Biol 23:101066. https://doi.org/10.1016/j.redox.2018.101066

    Article  CAS  PubMed  Google Scholar 

  102. Gianazza E, Brioschi M, Fernandez AM, Banfi C (2019) Lipoxidation in cardiovascular diseases. Redox Biol 23:101119. https://doi.org/10.1016/j.redox.2019.101119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zimmerman MC, Case AJ (2019) Redox biology in physiology and disease. Redox Biol 27:101267. https://doi.org/10.1016/j.redox.2019.101267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Balli D, Cecchi L, Khatib M, Bellumori M, Cairone F, Carradori S, Zengin G, Cesa S, Innocenti M, Mulinacci N (2020) Characterization of arils juice and peel decoction of fifteen varieties of punica Granatum L.: a focus on anthocyanins, ellagitannins and polysaccharides. Antioxidants 9:1–20. https://doi.org/10.3390/antiox9030238

    Article  CAS  Google Scholar 

  106. Ambigaipalan P, De Camargo AC, Shahidi F (2016) Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agric Food Chem 64:6584–6604. https://doi.org/10.1021/acs.jafc.6b02950

    Article  CAS  PubMed  Google Scholar 

  107. Coelho EM, Gomes RG, Machado BAS, Oliveira RS, Lima M d S, de Azêvedo LC, Guez MAU (2017) Passion fruit peel flour – technological properties and application in food products. Food Hydrocoll 62:158–164. https://doi.org/10.1016/j.foodhyd.2016.07.027

    Article  CAS  Google Scholar 

  108. Santos E, Andrade R, Gouveia E (2017) Utilization of the pectin and pulp of the passion fruit from Caatinga as probiotic food carriers. Food Biosci 20:56–61. https://doi.org/10.1016/j.fbio.2017.08.005

    Article  CAS  Google Scholar 

  109. Loizzo MR, Lucci P, Núñez O, Tundis R, Balzano M, Frega NG, Conte L, Moret S, Filatova D, Moyano E et al (2019) Native Colombian fruits and their by-products: phenolic profile, antioxidant activity and hypoglycaemic potential. Foods 8. https://doi.org/10.3390/foods8030089

  110. Kilic IH, Sarikurkcu C, Karagoz ID, Uren MC, Kocak MS, Cilkiz M, Tepe B (2016) A significant by-product of the industrial processing of pistachios: shell skin – RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Adv 6:1203–1209. https://doi.org/10.1039/c5ra24530c

    Article  CAS  Google Scholar 

  111. Carullo G, Spizzirri UG, Loizzo MR, Leporini M, Sicari V, Aiello F, Restuccia D (2020) Valorization of red grape (Vitis vinifera cv. Sangiovese) pomace as functional food ingredient. Ital J Food Sci 32:367–385. https://doi.org/10.14674/IJFS-1758

    Article  CAS  Google Scholar 

  112. Chamorro S, Viveros A, Alvarez I, Vega E, Brenes A (2012) Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chem 133:308–314. https://doi.org/10.1016/j.foodchem.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  113. Lucarini M, Durazzo A, Kiefer J, Santini A, Lombardi-Boccia G, Souto EB, Romani A, Lampe A, Nicoli SF, Gabrielli P et al (2020) Grape seeds: chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods 9. https://doi.org/10.3390/foods9010010

  114. Bijak M, Sut A, Kosiorek A, Saluk-Bijak J, Golanski J (2019) Dual anticoagulant/antiplatelet activity of polyphenolic grape seeds extract. Nutrients 11:1–9. https://doi.org/10.3390/nu11010093

    Article  CAS  Google Scholar 

  115. Kong F, He C, Kong F l, Han S, Kong X, Han W, Yang L (2021) Grape seed procyanidins inhibit the growth of breast cancer MCF-7 cells by down – regulating the EGFR/VEGF/MMP9 pathway. Nat Prod Commun. https://doi.org/10.1177/1934578X21991691

  116. Ruiz-Moreno MJ, Raposo R, Cayuela JM, Zafrilla P, Piñeiro Z, Moreno-Rojas JM, Mulero J, Puertas B, Giron F, Guerrero RF et al (2015) Valorization of grape stems. Ind Crop Prod 63:152–157. https://doi.org/10.1016/j.indcrop.2014.10.016

    Article  CAS  Google Scholar 

  117. Quero, J, Jimenez-Moreno, N, Esparza, I, Osada, J, Cerrada, E, Ancín-Azpilicueta, C, Rodríguez-Yoldi, M.J. (2021) Grape stem extracts with potential anticancer and antioxidant properties. Antioxidants 10(2):243. https://doi.org/10.3390/antiox10020243

  118. Leal C, Gouvinhas I, Santos RA, Rosa E, Silva AM, Saavedra MJ, Barros AIRNA (2020) Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: valorization of a by-product. Ind Crop Prod 154:112675. https://doi.org/10.1016/j.indcrop.2020.112675

    Article  CAS  Google Scholar 

  119. Dresch RR, Dresch MK, Guerreiro AF, Biegelmeyer R, Holzschuh MH, Rambo DF, Henriques AT (2014) Phenolic compounds from the leaves of Vitis labrusca and Vitis vinifera L. as a source of waste byproducts: development and validation of LC method and antichemotactic activity. Food Anal Methods 7:527–539. https://doi.org/10.1007/s12161-013-9650-4

    Article  Google Scholar 

  120. Dimić I, Teslić N, Putnik P, Kovačević DB, Zeković Z, Šojić B, Mrkonjić Ž, Čolović D, Montesano D, Pavlić B (2020) Innovative and conventional valorizations of grape seeds from winery by-products as sustainable source of lipophilic antioxidants. Antioxidants 9:1–19. https://doi.org/10.3390/antiox9070568

    Article  CAS  Google Scholar 

  121. Kaavya R, Kalpana L, Kumar AA (2017) Microwave methods for the extraction of bioactive components and enzymes from pineapple waste and its application in meat tenderization. Int J Agric Sci 9:4612–4620

    CAS  Google Scholar 

  122. Zhang G, Hu M, He L, Fu P, Wang L, Zhou J (2013) Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod Process 91:158–168. https://doi.org/10.1016/j.fbp.2012.09.003

    Article  CAS  Google Scholar 

  123. Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R (2012) Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 133:1292–1298. https://doi.org/10.1016/j.foodchem.2011.08.002

    Article  CAS  Google Scholar 

  124. Borja-Martínez M, Lozano-Sánchez J, Borrás-Linares I, Pedreño MA, Sabater-Jara AB (2020) Revalorization of broccoli by-products for cosmetic uses using supercritical fluid extraction. Antioxidants 9:1–17. https://doi.org/10.3390/antiox9121195

    Article  CAS  Google Scholar 

  125. Pal CBT, Jadeja GC (2020) Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci Technol Int 26:78–92. https://doi.org/10.1177/1082013219870010

    Article  CAS  PubMed  Google Scholar 

  126. Salama, Zeinab A, Aboul-Enein Ahmed M, Gaafar Alaa A, Abou-Elella F, Aly Hanan F (2018) Active constituents of kiwi (Actinidia Deliciosa Planch) peels and their biological activities as antioxidant, antimicrobial and anticancer. Res J Chem Environ 22(9):52–59

    Google Scholar 

  127. Deng J, Liu Q, Zhang C, Cao W, Fan D, Yang H (2016) Extraction optimization of polyphenols from waste kiwi fruit seeds (Actinidia chinensis planch.) and evaluation of its antioxidant and anti-inflammatory properties. Molecules 21. https://doi.org/10.3390/molecules21070832

  128. Villasante J, Pérez-carrillo E, Heredia-olea E, Metón I, Almajano MP (2019) In vitro antioxidant activity optimization of nut shell (Carya illinoinensis) by extrusion using response surface methods. Biomol Ther 9:883. https://doi.org/10.3390/biom9120883

    Article  CAS  Google Scholar 

  129. Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, Garcia L (2021) Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: a novel biological active ingredient to enrich food. Food Hydrocoll 111:106370. https://doi.org/10.1016/j.foodhyd.2020.106370

    Article  CAS  Google Scholar 

  130. Reshmitha TR, Thomas S, Geethanjali S, Arun KB, Nisha P (2017) DNA and mitochondrial protective effect of lycopene rich tomato (Solanum lycopersicum L.) peel extract prepared by enzyme assisted extraction against H2O2 induced oxidative damage in L6 myoblasts. J Funct Foods 28:147–156. https://doi.org/10.1016/j.jff.2016.10.031

    Article  CAS  Google Scholar 

  131. Álvarez MV, Hincapié S, Saavedra N, Alzate LM, Muñoz AM, Cartagena CJ, Londoño-Londoño J (2015) Exploring feasible sources for lutein production: food by-products and supercritical fluid extraction, a reasonable combination. Phytochem Rev 14:891–897. https://doi.org/10.1007/s11101-015-9434-0

    Article  CAS  Google Scholar 

  132. Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem 94:19–25. https://doi.org/10.1016/j.foodchem.2004.09.047

    Article  CAS  Google Scholar 

  133. Wang J, Deng N, Wang H, Li T, Chen L, Zheng B, Liu RH (2020) Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules 25:1–17. https://doi.org/10.3390/molecules25020351

    Article  CAS  Google Scholar 

  134. Ferreira SS, Silva AM, Nunes FM (2018) Citrus reticulata blanco peels as a source of antioxidant and anti-proliferative phenolic compounds. Ind Crop Prod 111:141–148. https://doi.org/10.1016/j.indcrop.2017.10.009

    Article  CAS  Google Scholar 

  135. Kamath V, Rajini PS (2007) The efficacy of cashew nut (Anacardium occidentale L.) skin extract as a free radical scavenger. Food Chem 103:428–433. https://doi.org/10.1016/j.foodchem.2006.07.031

    Article  CAS  Google Scholar 

  136. Wang T, Li X, Zhou B, Li H, Zeng J, Gao W (2015) Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J Funct Foods 13:276–288. https://doi.org/10.1016/j.jff.2014.12.049

    Article  CAS  Google Scholar 

  137. Li X, Wang T, Zhou B, Gao W, Cao J, Huang L (2014) Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem 152:531–538. https://doi.org/10.1016/j.foodchem.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  138. Lee JH, Lee K, Lee DH, Shin SY, Yong Y, Lee YH (2015) Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. J Korean Soc Appl Biol Chem 58:563–569. https://doi.org/10.1007/s13765-015-0081-3

    Article  CAS  Google Scholar 

  139. Zawawy NAE (2015) Antioxidant, antitumor, antimicrobial studies and quantitative phytochemical estimation of ethanolic extracts of selected fruit peels. Int J Curr Microbiol App Sci 4:298–309

    Google Scholar 

  140. Grillo G, Gunjević V, Radošević K, Redovniković IR, Cravotto G (2020) Deep eutectic solvents and nonconventional technologies for blueberry-peel extraction: kinetics, anthocyanin stability, and antiproliferative activity. Antioxidants 9:1–28. https://doi.org/10.3390/antiox9111069

    Article  CAS  Google Scholar 

  141. Song B, Wang H, Xia W, Zheng B, Li T, Liu RH (2020) Combination of apple peel and blueberry extracts synergistically induced lifespan extension: via DAF-16 in Caenorhabditis elegans. Food Funct 11:6170–6185. https://doi.org/10.1039/d0fo00718h

    Article  CAS  PubMed  Google Scholar 

  142. Silva V, Igrejas G, Falco V, Santos TP, Torres C, Oliveira AMP, Pereira JE, Amaral JS, Poeta P (2018) Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 92:516–522. https://doi.org/10.1016/j.foodcont.2018.05.031

    Article  CAS  Google Scholar 

  143. Teixeira N, Mateus N, de Freitas V, Oliveira J (2018) Wine industry by-product: full polyphenolic characterization of grape stalks. Food Chem 268:110–117. https://doi.org/10.1016/j.foodchem.2018.06.070

    Article  CAS  PubMed  Google Scholar 

  144. Chisté RC, Freitas M, Mercadante AZ, Fernandes E (2014) Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of glutathione induced by ROS in human erythrocytes. Life Sci 99:52–60. https://doi.org/10.1016/j.lfs.2014.01.059

    Article  CAS  PubMed  Google Scholar 

  145. Silva LR, Azevedo J, Pereira MJ, Valentão P, Andrade PB (2013) Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food Chem Toxicol 53:240–248. https://doi.org/10.1016/j.fct.2012.11.036

    Article  CAS  PubMed  Google Scholar 

  146. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol 71:40–56. https://doi.org/10.1016/j.vph.2015.03.005

    Article  CAS  Google Scholar 

  147. Seyedsadjadi N, Grant R (2021) The potential benefit of monitoring oxidative stress and inflammation in the prevention of non-communicable diseases (NCDs). Antioxidants 10:1–32. https://doi.org/10.3390/antiox10010015

    Article  CAS  Google Scholar 

  148. Uddin MS, Hossain MF, Mamun AA, Shah MA, Hasana S, Bulbul IJ, Sarwar MS, Mansouri RA, Ashraf GM, Rauf A et al (2020) Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci Total Environ 725:138313. https://doi.org/10.1016/j.scitotenv.2020.138313

    Article  CAS  PubMed  Google Scholar 

  149. Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, Park HH, Lee JH, Lee CS (2020) Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules 25:1–27. https://doi.org/10.3390/molecules25245932

    Article  CAS  Google Scholar 

  150. Soomro S (2019) Oxidative stress and inflammation. Open J Immunol 09:1–20. https://doi.org/10.4236/oji.2019.91001

    Article  CAS  Google Scholar 

  151. Pavez IC, Lozano-Sánchez J, Borrás-Linares I, Nuñez H, Robert P, Segura-Carretero A (2019) Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules 24:1–17. https://doi.org/10.3390/molecules24173108

    Article  CAS  Google Scholar 

  152. Parkinson L, Keast R (2014) Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease. Int J Mol Sci 15:12323–12334. https://doi.org/10.3390/ijms150712323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Beauchamp GK, Keast RS, Morel D, Lin J, Pika J, Han Q, Lee CH, Smith AB, Breslin PA (2005) Ibuprofen-like activity in extra-virgin olive oil. Nature 437:5–6

    Article  Google Scholar 

  154. Rosillo MÁ, Alcaraz MJ, Sánchez-Hidalgo M, Fernández-Bolaños JG, Alarcón-de-la-Lastra C, Ferrándiz ML (2014) Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis. J Nutr Biochem 25:1275–1281. https://doi.org/10.1016/j.jnutbio.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  155. Bigagli E, Cinci L, Paccosi S, Parenti A, D’Ambrosio M, Luceri C (2017) Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol 43:147–155. https://doi.org/10.1016/j.intimp.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  156. Plastina P, Benincasa C, Perri E, Fazio A, Augimeri G, Poland M, Witkamp R, Meijerink J (2019) Identification of hydroxytyrosyl oleate, a derivative of hydroxytyrosol with anti-inflammatory properties, in olive oil by-products. Food Chem 279:105–113. https://doi.org/10.1016/j.foodchem.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  157. de Albuquerque MAC, Levit R, Beres C, Bedani R, de Moreno de LeBlanc A, Saad SMI, LeBlanc JG (2019) Tropical fruit by-products water extracts of tropical fruit by-products as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. J Funct Foods 52:724–733. https://doi.org/10.1016/j.jff.2018.12.002

    Article  CAS  Google Scholar 

  158. Tag HM, Kelany OE, Tantawy HM, Fahmy AA (2014) Potential anti-inflammatory effect of lemon and hot pepper extracts on adjuvant-induced arthritis in mice. J Basic Appl Zool 67:149–157. https://doi.org/10.1016/j.jobaz.2014.01.003

    Article  CAS  Google Scholar 

  159. Wang J, Bian Y, Cheng Y, Sun R, Li G (2020) Effect of lemon peel flavonoids on UVB-induced skin damage in mice. RSC Adv 10:31470–31478. https://doi.org/10.1039/d0ra05518b

    Article  CAS  Google Scholar 

  160. Pádua TA, De Abreu BSSC, Costa TEMM, Nakamura MJ, Valente LMM, Henriques MDG, Siani AC, Rosas EC (2014) Anti-inflammatory effects of methyl ursolate obtained from a chemically derived crude extract of apple peels: potential use in rheumatoid arthritis. Arch Pharm Res 37:1487–1495. https://doi.org/10.1007/s12272-014-0345-1

    Article  CAS  PubMed  Google Scholar 

  161. Unsal V, Dalkiran T, Çiçek M, Kölükçü E (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10:184–202. https://doi.org/10.34172/apb.2020.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:1–14. https://doi.org/10.3389/fphys.2018.00477

    Article  Google Scholar 

  163. Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ (2020) Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 11:2805–2825. https://doi.org/10.1039/d0fo00216j

    Article  CAS  PubMed  Google Scholar 

  164. Durante M, Montefusco A, Marrese PP, Soccio M, Pastore D, Piro G, Mita G, Lenucci MS (2017) Seeds of pomegranate, tomato and grapes: an underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J Food Compos Anal 63:65–72. https://doi.org/10.1016/j.jfca.2017.07.026

    Article  CAS  Google Scholar 

  165. Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, Sung PJ, Chen JC, Weng CF (2020) Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol 177:1409–1423. https://doi.org/10.1111/bph.14816

    Article  CAS  PubMed  Google Scholar 

  166. Ballard CR, Maróstica MR (2018) Health benefits of flavonoids. Elsevier; ISBN 9780128147757

    Google Scholar 

  167. Ayoub NM, Siddique AB, Ebrahim HY, Mohyeldin MM, El Sayed KA (2017) The olive oil phenolic (−)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur J Pharmacol 810:100–111. https://doi.org/10.1016/j.ejphar.2017.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Toteda G, Lupinacci S, Vizza D, Bonofiglio R, Perri E, Bonofiglio M, Lofaro D, La Russa A, Leone F, Gigliotti P et al (2017) High doses of hydroxytyrosol induce apoptosis in papillary and follicular thyroid cancer cells. J Endocrinol Investig 40:153–162. https://doi.org/10.1007/s40618-016-0537-2

    Article  CAS  Google Scholar 

  169. Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P (2013) The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol 27:581–592. https://doi.org/10.1111/j.1472-8206.2012.01061.x

    Article  CAS  PubMed  Google Scholar 

  170. Garrido M, Terrón MP, Rodríguez AB (2013) Chrononutrition against oxidative stress in aging. Oxidative Med Cell Longev 2013. https://doi.org/10.1155/2013/729804

  171. Pan WG, Jiang SP, Luo P, Gao P, Chen B, Bu HT (2012) Extracts from the roots of Incarvillea younghusbandii on antioxidant effects and life span prolonging in Drosophila melanogaster. Chin J Nat Med 10:48–52. https://doi.org/10.1016/S1875-5364(12)60011-9

    Article  CAS  PubMed  Google Scholar 

  172. Ogle WO, Speisman RB, Ormerod BK (2012) Potential of treating age-related depression and cognitive decline with nutraceutical approaches: a mini-review. Gerontology 59:23–31. https://doi.org/10.1159/000342208

    Article  CAS  PubMed  Google Scholar 

  173. Zhou XX, Yang Q, Xie YH, Sun JY, Qiu PC, Cao W, Wang SW (2013) Protective effect of tetrahydroxystilbene glucoside against D-galactose induced aging process in mice. Phytochem Lett 6:372–378. https://doi.org/10.1016/j.phytol.2013.05.002

    Article  CAS  Google Scholar 

  174. Li XH, Li CY, Lu JM, Tian RB, Wei J (2012) Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett 514:46–50. https://doi.org/10.1016/j.neulet.2012.02.054

    Article  CAS  PubMed  Google Scholar 

  175. Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14:741–751. https://doi.org/10.2119/2008-00058.Rabe

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I, Kato A (2010) In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem 122:1061–1066. https://doi.org/10.1016/j.foodchem.2010.03.075

    Article  CAS  Google Scholar 

  177. You Q, Chen F, Wang X, Jiang Y, Lin S (2012) Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT Food Sci Technol 46:164–168. https://doi.org/10.1016/j.lwt.2011.10.011

    Article  CAS  Google Scholar 

  178. Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A, Pacheco N (2017) Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 7. https://doi.org/10.3390/agronomy7030047

  179. Alongi M, Melchior S, Anese M (2019) Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT 100:300–305. https://doi.org/10.1016/j.lwt.2018.10.068

    Article  CAS  Google Scholar 

  180. El-Hadary AE, Ramadan MF (2019) Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J Food Biochem 43:1–9. https://doi.org/10.1111/jfbc.12803

    Article  CAS  Google Scholar 

  181. Islam MR, Haque AR, Kabir MR, Hasan MM, Khushe KJ, Hasan SMK (2020) Fruit by-products: the potential natural sources of antioxidants and α-glucosidase inhibitors. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04681-2

  182. Tresserra-Rimbau A, Guasch-Ferré M, Salas-Salvadó J, Toledo E, Corella D, Castañer O, Guo X, Gómez-Gracia E, Lapetra J, Arós F et al (2016) Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr 146:767–777. https://doi.org/10.3945/jn.115.223610

    Article  CAS  Google Scholar 

  183. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011. https://doi.org/10.1155/2011/572634

  184. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262. https://doi.org/10.1016/j.jns.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  185. Johnson KA, Moran EK, Becker JA, Blacker D, Fischman AJ, Albert MS (2007) Differences in mild cognitive impairment. Dementia 64:240–247

    Google Scholar 

  186. Du ZX, Zhang HY, Meng X, Guan Y, Wang HQ (2009) Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 9:1–11. https://doi.org/10.1186/1471-2407-9-56

    Article  CAS  Google Scholar 

  187. Lee D, Jo MG, Kim SY, Chung CG, Lee SB (2020) Dietary antioxidants and the mitochondrial quality control: their potential roles in Parkinson’s disease treatment. Antioxidants 9:1–22. https://doi.org/10.3390/antiox9111056

    Article  CAS  Google Scholar 

  188. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104. https://doi.org/10.1007/s11010-010-0563-x

    Article  CAS  PubMed  Google Scholar 

  189. Khadka B, Lee JY, Park DH, Kim KT, Bae JS (2020) The role of natural compounds and their nanocarriers in the treatment of cns inflammation. Biomol Ther 10:1–41. https://doi.org/10.3390/biom10101401

    Article  CAS  Google Scholar 

  190. Pietrocola F, Mariño G, Lissa D, Vacchelli E, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G (2012) Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11:3851–3860. https://doi.org/10.4161/cc.22027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bhullar KS, Rupasinghe HPV (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxidative Med Cell Longev 2013. https://doi.org/10.1155/2013/891748

  192. Sharifi-Rad M, Lankatillake C, Dias DA, Docea AO, Mahomoodally MF, Lobine D, Chazot PL, Kurt B, Boyunegmez Tumer T, Catarina Moreira A et al (2020) Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J Clin Med 9:1061. https://doi.org/10.3390/jcm9041061

    Article  CAS  PubMed Central  Google Scholar 

  193. de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM (2021) Polyphenols and their applications: an approach in food chemistry and innovation potential. Food Chem 338:127535. https://doi.org/10.1016/j.foodchem.2020.127535

    Article  CAS  PubMed  Google Scholar 

  194. Li P, Ma K, Wu HY, Wu YP, Li BX (2018) Isoflavones induce BEX2-dependent autophagy to prevent ATR-induced neurotoxicity in SH-SY5Y cells. Cell Physiol Biochem 43:1866–1879. https://doi.org/10.1159/000484075

    Article  CAS  Google Scholar 

  195. Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM (2016) Bioactive effects of quercetin in the central nervous system: focusing on the mechanisms of actions. Biomed Pharmacother 84:892–908. https://doi.org/10.1016/j.biopha.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  196. Ueda T, Inden M, Shirai K, Sekine SI, Masaki Y, Kurita H, Ichihara K, Inuzuka T, Hozumi I (2017) The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-03115-y

    Article  CAS  Google Scholar 

  197. Vidoni C, Secomandi E, Castiglioni A, Melone MAB, Isidoro C (2018) Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int 117:174–187. https://doi.org/10.1016/j.neuint.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  198. Kirtonia A, Sethi G, Garg M (2020) Redox homeostasis is an essential requirement of the biological systems for performing various normal cellular functions including cellular growth, differentiation, senescence, survival and aging in humans. The changes in the basal levels of reactive oxyg. Cell Mol Life Sci 77:4459–4483. https://doi.org/10.1007/s00018-020-03536-5

    Article  CAS  PubMed  Google Scholar 

  199. Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM (2013) Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteome 92:110–131. https://doi.org/10.1016/j.jprot.2013.06.004

    Article  CAS  Google Scholar 

  200. Chang SK, Jiang Y, Yang B (2021) An update of prenylated phenolics: food sources, chemistry and health benefits. Trends Food Sci Technol 108:197–213. https://doi.org/10.1016/j.tifs.2020.12.022

    Article  CAS  Google Scholar 

  201. do Rosario VA, Spencer J, Weston-Green K, Charlton K (2020) The postprandial effect of anthocyanins on cardiovascular disease risk factors: a systematic literature review of high-fat meal challenge studies. Curr Nutr Rep 9:381–393. https://doi.org/10.1007/s13668-020-00328-y

    Article  CAS  PubMed  Google Scholar 

  202. Da Pozzo E, Costa B, Cavallini C, Testai L, Martelli A, Calderone V, Martini C (2017) The citrus flavanone naringenin protects myocardial cells against age-associated damage. Oxid Med Cell Longev 2017:9536148

    PubMed  PubMed Central  Google Scholar 

  203. Lu WJ, Lin KC, Liu CP, Lin CY, Wu HC, Chou DS, Geraldine P, Huang SY, Hsieh CY, Sheu JR (2016) Prevention of arterial thrombosis by nobiletin: In vitro and in vivo studies. J Nutr Biochem 28:1–8. https://doi.org/10.1016/j.jnutbio.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  204. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411. https://doi.org/10.1093/jn/137.11.2405

    Article  CAS  PubMed  Google Scholar 

  205. Seo J, Lee HS, Ryoo S, Seo JH, Min BS, Lee JH (2011) Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation. Eur J Pharmacol 673:56–64. https://doi.org/10.1016/j.ejphar.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  206. Benavente-García O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205. https://doi.org/10.1021/jf8006568

    Article  CAS  PubMed  Google Scholar 

  207. Singh B, Singh JP, Kaur A, Singh N (2020) Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 132:109114. https://doi.org/10.1016/j.foodres.2020.109114

    Article  CAS  PubMed  Google Scholar 

  208. Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ (2021) Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (review). Int J Mol Med 47:37–48. https://doi.org/10.3892/ijmm.2020.4783

    Article  CAS  PubMed  Google Scholar 

  209. Alu MH, Rababah T, Alhamad MN (2017) Application of olive oil as nutraceutical and pharmaceutical food: composition and biofunctional constituents and their roles in functionality, therapeutic, and nutraceutical properties. Elsevier; ISBN 9780128114124

    Google Scholar 

  210. Gómez-Caravaca AM, Lozano-Sánchez J, Contreras Gámez MDM, Carretero AS, Taamalli A (2015) Bioactive phenolic compounds from Olea Europaea: a challenge for analytical chemistry. AOCS Press; ISBN 9781630670429

    Google Scholar 

  211. Boronat A, Martínez-Huélamo M, Cobos A, de la Torre R (2018) Wine and olive oil phenolic compounds interaction in humans. Diseases 6:76. https://doi.org/10.3390/diseases6030076

    Article  CAS  PubMed Central  Google Scholar 

  212. Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24:4132. https://doi.org/10.3390/molecules24224132

    Article  CAS  PubMed Central  Google Scholar 

  213. Venkatesan J, Keekan KK, Anil S, Bhatnagar I, Kim S-K (2019) Phlorotannins. Encycl Food Chem:515–527. https://doi.org/10.1016/B978-0-08-100596-5.22360-3

  214. Fraga-Corral M, García-Oliveira P, Pereira AG, Lourenço-Lopes C, Jimenez-Lopez C, Prieto MA, Simal-Gandara J (2020) Technological application of tannin-based extracts. Molecules 25:1–27

    Article  Google Scholar 

  215. Kebede M, Admassu S (2019) Application of antioxidants in food processing industry: options to improve the extraction yields and market value of natural products. Adv Food Technol Nutr Sci Open J 5:38–49. https://doi.org/10.17140/aftnsoj-5-155

    Article  CAS  Google Scholar 

  216. Henry CJ (2010) Functional foods. Eur J Clin Nutr 64:657–659. https://doi.org/10.1038/ejcn.2010.101

    Article  CAS  PubMed  Google Scholar 

  217. Ramli ANM, Manap NWA, Bhuyar P, Azelee NIW (2020) Passion fruit (Passiflora edulis) peel powder extract and its application towards antibacterial and antioxidant activity on the preserved meat products. SN Appl Sci 2:1–11. https://doi.org/10.1007/s42452-020-03550-z

    Article  CAS  Google Scholar 

  218. Borges MS, Biz AP, Bertolo AP, Bagatini L, Rigo E, Cavalheiro D (2021) Enriched cereal bars with wine fermentation biomass. J Sci Food Agric 101:542–547. https://doi.org/10.1002/jsfa.10664

    Article  CAS  PubMed  Google Scholar 

  219. Belmiro RH, de Oliveira LC, Geraldi MV, Maróstica Junior MR, Cristianini M (2021) Modification of coffee coproducts by-products by dynamic high pressure, acetylation and hydrolysis by cellulase: a potential functional and sustainable food ingredient. Innov Food Sci Emerg Technol 68:102608. https://doi.org/10.1016/j.ifset.2021.102608

    Article  CAS  Google Scholar 

  220. Comunian TA, Silva MP, Souza CJF (2021) The use of food by-products as a novel for functional foods: their use as ingredients and for the encapsulation process. Trends Food Sci Technol 108:269–280. https://doi.org/10.1016/j.tifs.2021.01.003

    Article  CAS  Google Scholar 

  221. Esposito T, Celano R, Pane C, Piccinelli AL, Sansone F, Picerno P, Zaccardelli M, Aquino RP, Mencherini T (2019) Chestnut (Castanea sativa miller.) burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on phytopathogenic fungi. Molecules 24:1–21. https://doi.org/10.3390/molecules24020302

    Article  CAS  Google Scholar 

  222. Jyske T, Kuroda K, Keriö S, Pranovich A, Linnakoski R, Hayashi N, Aoki D, Fukushima K (2020) Localization of (+)-catechin in Picea abies phloem: responses to wounding and fungal inoculation. Molecules 25. https://doi.org/10.3390/molecules25122952

  223. Aires A, Carvalho R, Saavedra MJ (2016) Valorization of solid wastes from chestnut industry processing: extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Manag 48:457–464. https://doi.org/10.1016/j.wasman.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  224. Taofiq O, González-Paramás AM, Martins A, Barreiro MF, Ferreira ICFR (2016) Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics-a review. Ind Crop Prod 90:38–48. https://doi.org/10.1016/j.indcrop.2016.06.012

    Article  CAS  Google Scholar 

  225. Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Garcia-Oliveira P, Carpena M, Prieto MA, Simal-Gandara J (2020) Metabolites from macroalgae and its applications in the cosmetic industry: a circular economy approach. Resources 9:101. https://doi.org/10.3390/RESOURCES9090101

    Article  Google Scholar 

  226. Morais T, Cotas J, Pacheco D, Pereira L (2021) Seaweeds compounds: an ecosustainable source of cosmetic ingredients? 8. https://doi.org/10.3390/cosmetics8010008

  227. Das AK, Islam MN, Faruk MO, Ashaduzzaman M, Dungani R (2020) Review on tannins: extraction processes, applications and possibilities. S Afr J Bot 135:58–70. https://doi.org/10.1016/j.sajb.2020.08.008

    Article  CAS  Google Scholar 

  228. Peanparkdee M, Iwamoto S (2019) Bioactive compounds from by-products of rice cultivation and rice processing: extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol 86:109–117. https://doi.org/10.1016/j.tifs.2019.02.041

    Article  CAS  Google Scholar 

  229. Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA (2021) Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 14:157. https://doi.org/10.3390/ph14020157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kamel R, El-Wakil NA, Dufresne A, Elkasabgy NA (2020) Nanocellulose: from an agricultural waste to a valuable pharmaceutical ingredient. Int J Biol Macromol 163:1579–1590. https://doi.org/10.1016/j.ijbiomac.2020.07.242

    Article  CAS  PubMed  Google Scholar 

  231. de Souza JRCL, Villanova JCO, de Souza T d S, Maximino RC, Menini L (2021) Vegetable fixed oils obtained from soursop agro-industrial waste: extraction, characterization and preliminary evaluation of the functionality as pharmaceutical ingredients. Environ Technol Innov 21:101379. https://doi.org/10.1016/j.eti.2021.101379

    Article  CAS  Google Scholar 

  232. Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J (2020) Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 11:4853–4877. https://doi.org/10.1039/d0fo00937g

    Article  CAS  PubMed  Google Scholar 

  233. Ben-Othman S, Jõudu I, Bhat R (2020) Bioactives from agri-food wastes: present insights and future challenges. Molecules 25:1–34. https://doi.org/10.3390/molecules25030510

    Article  CAS  Google Scholar 

  234. Guerrini A, Burlini I, Huerta Lorenzo B, Grandini A, Vertuani S, Tacchini M, Sacchetti G (2020) Antioxidant and antimicrobial extracts obtained from agricultural by-products: strategies for a sustainable recovery and future perspectives. Food Bioprod Process 124:397–407. https://doi.org/10.1016/j.fbp.2020.10.003

    Article  CAS  Google Scholar 

  235. Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4:1–14. https://doi.org/10.1186/s40643-017-0148-6

    Article  CAS  Google Scholar 

  236. Cant L, Barbosa JR, Laura A, Wariss F, Bezerra F, Henrique R, Pinto H, Nunes R, Junior DC (2021) From waste to sustainable industry: how can agro-industrial wastes help in the development of new products ? Resour Conserv Recycl 169:105466. https://doi.org/10.1016/j.resconrec.2021.105466

    Article  Google Scholar 

  237. Gullón P, Gullón B, Romaní A, Rocchetti G, Lorenzo JM (2020) Smart advanced solvents for bioactive compounds recovery from agri-food by-products: a review. Trends Food Sci Technol 101:182–197. https://doi.org/10.1016/j.tifs.2020.05.007

    Article  CAS  Google Scholar 

  238. Wen C, Zhang J, Zhang H, Duan Y, Ma H (2020) Plant protein-derived antioxidant peptides: isolation, identification, mechanism of action and application in food systems: a review. Trends Food Sci Technol 105:308–322. https://doi.org/10.1016/j.tifs.2020.09.019

    Article  CAS  Google Scholar 

  239. Jin Q, Yang L, Poe N, Huang H (2018) Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci Technol 74:119–131. https://doi.org/10.1016/j.tifs.2018.02.014

    Article  CAS  Google Scholar 

  240. Jiménez-Moreno N, Esparza I, Bimbela F, Gandía LM, Ancín-Azpilicueta C (2020) Valorization of selected fruit and vegetable wastes as bioactive compounds: opportunities and challenges. Crit Rev Environ Sci Technol 50:2061–2108. https://doi.org/10.1080/10643389.2019.1694819

    Article  CAS  Google Scholar 

  241. Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G (2020) Sustainability of food waste biorefinery: a review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol 312:123575. https://doi.org/10.1016/j.biortech.2020.123575

    Article  CAS  PubMed  Google Scholar 

  242. Cristóbal J, Caldeira C, Corrado S, Sala S (2018) Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour Technol 259:244–252. https://doi.org/10.1016/j.biortech.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  243. Plazzotta S, Manzocco L (2019) Food waste valorization. In: Saving food: production, supply chain, food waste and food consumption. Elsevier, pp 279–313; ISBN 9780128153574

    Chapter  Google Scholar 

  244. Donner M, Verniquet A, Broeze J, Kayser K, Vries H (2021) De critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour Conserv Recycl 165:105236. https://doi.org/10.1016/j.resconrec.2020.105236

    Article  Google Scholar 

  245. Alexa D, Hamelin L, Thomsen M (2020) Towards transparent valorization of food surplus, waste and loss: clarifying definitions, food waste hierarchy, and role in the circular economy. Sci Total Environ 706:136033. https://doi.org/10.1016/j.scitotenv.2019.136033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results was funded by Xunta de Galicia supporting the program EXCELENCIA-ED431F 2020/12; to Ibero-American Program on Science and Technology (CYTED – AQUA-CIBUS, P317RT0003) and to the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019). The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security, has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (n° 696295). The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891); by Xunta de Galicia for supporting the pre-doctoral grants of P. García-Oliveira (ED481A-2019/295) and A. González Pereira (ED481A-2019/0228) and the program BENEFICIOS DO CONSUMO DAS ESPECIES TINTORERA-(CO-0019-2021) that supports the work of F. Chamorro and by University of Vigo for supporting the predoctoral grant of M. Carpena (Uvigo-00VI 131H 6410211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Simal-Gandara or M. A. Prieto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Carpena, M. et al. (2021). Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics