Skip to main content
Log in

Exploring feasible sources for lutein production: food by-products and supercritical fluid extraction, a reasonable combination

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Actually by-products from lettuce and cabbage have not been properly used despite the fact that they are rich in bioactive compounds as lutein. It is known that lutein plays an important role in the prevention of degenerative diseases. Lutein, is recommended as a health supplement for the prevention of cancer and diseases related to retinal degeneration or to ameliorate the effects of degenerative diseases such as age-related macular degeneration. The aim of this work was to extract lutein from a mix of dried cabbage and lettuce using supercritical fluid extraction with CO2 as solvent (SFE-CO2), under different combinations of pressure and temperature in order to determining the lutein yield, total yield and antioxidant capacity. Also the extraction kinetic of lutein from cabbage and lettuce is shown in this work. The best lutein yield was obtained at 350 bar and 65 °C, while the highest antioxidant capacity was at 400 bar and 85 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis (2-amidinopropane) dihydrochloride

AUC:

Area under the curve

CO2 :

Carbone dioxide

DW:

Dry weight

LOD:

Limit of detection

LOQ:

Limit of quantification

ORAC:

Oxygen radical absorbance capacity

RMCD:

Randomly methylated cyclodextrin

RSM:

Response surface methodology

SFE:

Supercritical fluid extraction

TE:

Trolox equivalents

Trolox:

(1,6) Hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid

References

  • Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83. doi:10.1016/j.toxlet.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  • Alzate Tamayo LM, Jimenez Cartagena C, Londoño Londoño J (2011) Aprovechamiento de residuos agroindustriales para mejorar la calidad sensorial y nutricional de productos avícolas. Prod Limpia 6:108–127

    Google Scholar 

  • Alzate LM, González D, Londoño-Londoño J (2013) Recovery of carotenoids from agroindustrial by-products using clean extraction techniques: supercritical fluid extraction and ultrasound assisted extraction. III Iberoamerican Conference on supercritical fluids, Colombia, p 7

  • da Silva LMR, de Figueiredo EAT, Ricardo NMPS et al (2014) Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem 143:398–404. doi:10.1016/j.foodchem.2013.08.001

    Article  Google Scholar 

  • CORPOICA CC de IA (2006) El Cultivo de las Crucíferas Brócoli, Coliflor, Repollo, Repollo, Col China, 20th edn. Rionegro, Antioquia

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • El-raey MA, Ibrahim GE, Eldahshan OA (2013) Lycopene and lutein; a review for their chemistry and medicinal uses. J Pharmacogn Phytochem 2:245–254

    Google Scholar 

  • Fernández-Sevilla JM, Fernández FGA, Grima EM (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40. doi:10.1007/s00253-009-2420-y

    Article  PubMed  Google Scholar 

  • Holden JM, Eldridge AL, Beecher Gary R, Buzzard M et al (1999) Carotenoid content of U.S. foods: an update of the database. J Food Compost Anal 12:169–196

    Article  CAS  Google Scholar 

  • Hsu Y-W, Tsai C-F, Chen W-K et al (2011) Determination of lutein and zeaxanthin and antioxidant capacity of supercritical carbon dioxide extract from daylily (Hemerocallis disticha). Food Chem 129:1813–1818. doi:10.1016/j.foodchem.2011.05.116

    Article  CAS  Google Scholar 

  • Khachik F, Chang A-N, Gana A, Mazzola E (2007) Partial synthesis of (3R,6‘R)-α-cryptoxanthin and (3R)-β-cryptoxanthin from (3R,3‘R,6‘R)-Lutein. J Nat Prod 70:220–226. doi:10.1021/np060575v

    Article  CAS  PubMed  Google Scholar 

  • Khanam UKS, Oba S, Yanase E, Murakami Y (2012) Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J Funct Foods 4:979–987. doi:10.1016/j.jff.2012.07.006

    Article  CAS  Google Scholar 

  • Kuhnen S (2012) Brazilian maize landraces silks as source of lutein: an important carotenoid in the prevention of age-related macular degeneration. Food Nutr Sci 03:1609–1614. doi:10.4236/fns.2012.311210

    Article  CAS  Google Scholar 

  • Macías-Sánchez MD, Fernandez-Sevilla JM, Fernández FGA et al (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123:928–935. doi:10.1016/j.foodchem.2010.04.076

    Article  Google Scholar 

  • Maiani G, Castón MJP, Catasta G et al (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53(Suppl 2):S194–S218. doi:10.1002/mnfr.200800053

    Article  PubMed  Google Scholar 

  • Murkovic M, Malleder U, Neunteufl H (2002) Carotenoid content in different varieties of pumpkins. J Food Compost Anal 15:633–638

    Article  CAS  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626. doi:10.1021/jf010586o

    Article  CAS  PubMed  Google Scholar 

  • Perry A, Rasmussen H, Johnson EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compost Anal 22:9–15

    Article  CAS  Google Scholar 

  • Rautenbach F, Venter I (2010) Hydrophilic and lipophilic antioxidant capacity of commonly consumed South African fruits, vegetables, grains, legumes, fats/oils and beverages. J Food Compost Anal 23:753–761. doi:10.1016/j.jfca.2010.03.018

    Article  CAS  Google Scholar 

  • Romo-Hualde A, Yetano-Cunchillos AI, González-Ferrero C et al (2012) Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chem 133:1045–1049. doi:10.1016/j.foodchem.2012.01.062

    Article  CAS  Google Scholar 

  • Sales JM, Resurreccion AVA (2010) Maximizing phenolics, antioxidants and sensory acceptance of UV and ultrasound-treated peanuts. LWT Food Sci Technol 43:1058–1066. doi:10.1016/j.lwt.2010.02.009

    Article  CAS  Google Scholar 

  • Shi J, Jun Xue S, Jiang Y, Ye X (2013) Separation, extraction and concentration processes in the food. Elsevier, Beverage and Nutraceutical Industries

    Google Scholar 

  • Singh J et al (2007) Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J Food Compost Anal 20:106–112

    Article  CAS  Google Scholar 

  • Skerget M, Bezjak M, Makovšek K, Knez Z (2010) Extraction of lutein diesters from tagetes erecta using supercritical CO2 and liquid propane. Acta Chim Slov 57:60–65

    CAS  PubMed  Google Scholar 

  • Sovova H, Stateva RP, Galushko AA (2001) Solubility of B-carotene in supercritical CO2 and the effect of entrainers. J Supercrit Fluids 21:195–203

    Article  CAS  Google Scholar 

  • Stockham K, Paimin R, Orbell JD et al (2011) Modes of handling oxygen radical absorbance capacity (ORAC) data and reporting values in product labelling. J Food Compost Anal 24:686–691. doi:10.1016/j.jfca.2010.11.007

    Article  CAS  Google Scholar 

  • Whitehead A, Mares J, Danis R (2006) Macular pigment: a review of current knowledge. Arch Ophtalmol 124:1038–1045

    Article  CAS  Google Scholar 

  • Yen H-W, Chiang W-C, Sun C-H (2012) Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J Taiwan Inst Chem Eng 43:53–57. doi:10.1016/j.jtice.2011.07.010

    Article  CAS  Google Scholar 

  • Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Government of Antioquia—Secretary of Agriculture and Rural Development, through Science and Technology Fund (General System of Royalties) (Contract 4600001050), and the Research Department of the Corporacion Universitaria Lasallista. Authors thank to Central Mayorista de Antioquia for by-products supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Londoño-Londoño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, M.V., Hincapié, S., Saavedra, N. et al. Exploring feasible sources for lutein production: food by-products and supercritical fluid extraction, a reasonable combination. Phytochem Rev 14, 891–897 (2015). https://doi.org/10.1007/s11101-015-9434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9434-0

Keywords

Navigation