Skip to main content

Microencapsulation Methods for Food Antioxidants

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Abstract

Antioxidants are important constituents of foods due to their potential to delay or inhibit oxidation, extend the shelf life, and protect the freshness, color, aroma, or textural attributes of the product. In addition, they have several health beneficial effects which attracted the attention of many scientists. Protecting or improving the stability and bioactivity of antioxidants against environmental factors is possible with the encapsulation process. Encapsulation also enables the fortification of foods with antioxidants and improves their bioavailability and bioactivity. Chemical, physical, physicochemical, and biological methods are used in order to encapsulate food antioxidants within appropriate coating materials. Properties of the antioxidative core material and the coating agent, desired microcapsule size, purpose of encapsulation, and further applications are the most important factors that need to be considered for the selection of the appropriate encapsulation technique, besides the application costs and presence of required facilities/infrastructure for the encapsulation process. In order to obtain the most efficient microcapsules with high bioactivity, long retention time and low operational costs, encapsulation methods may either be used individually or two or more methods might be combined. Choosing the best microencapsulation method is a dynamic phenomenon depending on several factors and parameters which are unique for each antioxidant encapsulation case. In this chapter, microencapsulation methods used for the encapsulation of food antioxidants are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Percy S (1872) Improvement in drying and concentrating liquid substances by atomizing. 1872: United States Patents

    Google Scholar 

  2. Sobel R, Versic R, Gaonkar AG (2014) Introduction to microencapsulation and controlled delivery in foods. In: Microencapsulation in the food industry. Elsevier Academic Press, pp 3–12

    Google Scholar 

  3. Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: A review. Int J Food Sci Nutr 50:213–224

    Google Scholar 

  4. Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631

    Article  CAS  PubMed  Google Scholar 

  5. Sobel R, Gundlach M, Su C-P (2014) Novel concepts and challenges of flavor microencapsulation and taste modification. In: Microencapsulation in the food industry. Elsevier Academic Press, pp 421–442

    Google Scholar 

  6. Kamiloglu S, Toydemir G, Boyacioglu D, Beekwilder J, Hall RD, Capanoglu E (2016) A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit Rev Food Sci Nutr 56(Suppl 1):S110–S129

    Article  CAS  PubMed  Google Scholar 

  7. Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E (2019) A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 272:494–506

    Article  CAS  PubMed  Google Scholar 

  8. Carocho M, Morales P, Ferreira ICFR (2018) Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Tech 71:107–120

    Article  CAS  Google Scholar 

  9. Wittbecker EL, Morgan PW (1959) Interfacial polycondensation. I J Polym Sci 40:289–297

    Article  CAS  Google Scholar 

  10. Perignon C, Ongmayeb G, Neufeld R, Frere Y, Poncelet D (2015) Microencapsulation by interfacial polymerisation: membrane formation and structure. J Microencapsul 32:1–15

    Article  CAS  PubMed  Google Scholar 

  11. Raaijmakers MJT, Benes NE (2016) Current trends in interfacial polymerization chemistry. Prog Polym Sci 63:86–142

    Article  CAS  Google Scholar 

  12. Jackson LS, Lee K (1991) Microencapsulation and the Food-Industry. Food Sci Technol-Leb 24:289–297

    CAS  Google Scholar 

  13. Chang TMS (1964) Semipermeable microcapsules. Science 146:524–525

    Article  CAS  PubMed  Google Scholar 

  14. Hirech K, Payan S, Carnelle G, Brujes L, Legrand J (2003) Microencapsulation of an insecticide by interfacial polymerisation. Powder Technol 130:324–330

    Article  CAS  Google Scholar 

  15. Kafka AP, McLeod BJ, Rades T, McDowell A (2011) Release and bioactivity of PACA nanoparticles containing D-Lys6-GnRH for brushtail possum fertility control. J Control Release 149:307–313

    Article  CAS  PubMed  Google Scholar 

  16. Pitaksuteepong T, Davies NM, Tucker IG, Rades T (2002) Factors influencing the entrapment of hydrophilic compounds in nanocapsules prepared by interfacial polymerisation of water-in-oil microemulsions. Eur J Pharm Biopharm 53:335–342

    Article  CAS  PubMed  Google Scholar 

  17. Watnasirichaikul S, Davies NM, Rades T, Tucker IG (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharmaceut Res 17:684–689

    Article  CAS  Google Scholar 

  18. Scher HB (1999) Microencapsulation of pesticides by interfacial polymerization. Abstr Pap Am Chem S 217:U63–U63

    Google Scholar 

  19. Duan BA (2016) Microencapsulation via in situ polymerization. In: Mishra M (ed) Handbook of encapsulation and controlled release. Taylor and Francis, Boca Raton, pp 307–314

    Google Scholar 

  20. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Tech 6:628–647

    Article  CAS  Google Scholar 

  21. Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Del 6:1161–1173

    Article  CAS  Google Scholar 

  22. Cheirsilp B, Rakmai J (2016) Inclusion complex formation of cyclodextrin with its guest and their applications. BEM Medicine 2:1–6

    Google Scholar 

  23. Guo RD, Wilson L (2013) Cyclodextrin-based microcapsule materials-their preparation and physiochemical properties. Curr Org Chem 17:14–21

    Article  CAS  Google Scholar 

  24. Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23:1361–1394

    Article  CAS  Google Scholar 

  25. Huang HH, Huang CX, Yin C, Khan MRU, Zhao H, Xu YF, Huang LJ, Zheng DT, Qi MH (2020) Preparation and characterization of beta-cyclodextrin-oreganoessential oil microcapsule and its effect on storage behavior of purple yam. J Sci Food Agr 100:4849–4857

    Article  CAS  Google Scholar 

  26. Yang WH, Wang L, Ban ZJ, Yan JW, Lu HY, Zhang XC, Wu Q, Aghdam MS, Luo ZS, Li L (2019) Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocoll 95:177–185

    Article  CAS  Google Scholar 

  27. Das S, Gazdag Z, Szente L, Meggyes M, Horváth G, Lemli B, Kunsági-Máté S, Kuzma M, Kőszegi T (2019) Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin – captured essential oils. Food Chem 278:305–313

    Article  CAS  PubMed  Google Scholar 

  28. Marques CS, Carvalho SG, Bertoli LD, Villanova JCO, Pinheiro PF, dos Santos DCM, Yoshida MI, de Freitas JCC, Cipriano DF, Bernardes PC (2019) β-Cyclodextrin inclusion complexes with essential oils: obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int 119:499–509

    Google Scholar 

  29. Ho S, Thoo YY, Young DJ, Siow LF (2017) Inclusion complexation of catechin by β-cyclodextrins: characterization and storage stability. LWT 86:555–565

    Article  CAS  Google Scholar 

  30. Quilaqueo M, Millao S, Luzardo-Ocampo I, Campos-Vega R, Acevedo F, Shene C, Rubilar M (2019) Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocoll 91:143–152

    Article  CAS  Google Scholar 

  31. Wang SQ, Kong LY, Zhao Y, Tan LB, Zhang J, Du ZY, Zhang H (2019) Lipophilization and molecular encapsulation of p-coumaric acid by amylose inclusion complex Food Hydrocoll 93:270–275

    Google Scholar 

  32. Rao SQ, Xu GW, Lu XN, Zhang RY, Gao L, Wang QY, Yang ZQ, Jiao XA (2020) Characterization of ovalbumin-carvacrol inclusion complexes as delivery systems with antibacterial application. Food Hydrocoll 105:105753

    Google Scholar 

  33. Buboltz JT, Feigenson GW (1999) A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochimica et Biophysica Acta (BBA)-Biomembranes 1417:232–245

    Article  CAS  Google Scholar 

  34. Yeo Y, Park K (2006) A new microencapsulation technique based on the solvent exchange method. ACS Publications

    Google Scholar 

  35. Ni M, Tresset G, Iliescu C, Hauser CAE (2020) Ultrashort Peptide Theranostic Nanoparticles by Microfluidic-Assisted Rapid Solvent Exchange. IEEE Trans NanoBiosci 19:627–632

    Article  Google Scholar 

  36. Yeo Y, Park K (2004) A new microencapsulation method using an ultrasonic atomizer based on interfacial solvent exchange. J Control Release 100:379–388

    Article  CAS  PubMed  Google Scholar 

  37. Timilsena YP, Haque MA, Adhikari B (2020) Encapsulation in the food industry: a brief historical overview to recent developments. Food and Nutr Sci 11:481–508

    CAS  Google Scholar 

  38. Jyothi NV, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197

    Article  CAS  PubMed  Google Scholar 

  39. Ayoub A, Sood M, Singh J, Bandral JD, Gupta N, Bhat A (2019) Microencapsulation and its applications in food industry. J Pharmacogn Phytochem 8:32–37

    CAS  Google Scholar 

  40. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182

    Article  CAS  PubMed  Google Scholar 

  41. Ivanova E, Teunou E, Poncelet D (2005) Encapsulation of water sensitive products: effectiveness and assessment of fluid bed dry coating. J Food Eng 71:223–230

    Article  Google Scholar 

  42. Dewettinck K, Huyghebaert A (1999) Fluidized bed coating in food technology. Trends Food Sci Tech 10:163–168

    Article  CAS  Google Scholar 

  43. Wurster DE (1953) Method of applying coatings to edible tablets or the like. Wisconsin Alumni Research Foundation

    Google Scholar 

  44. Anwar SH, Weissbrodt J, Kunz B (2010) Microencapsulation of fish oil by spray granulation and fluid bed film coating. J Food Sci 75:E359–E371

    Article  CAS  PubMed  Google Scholar 

  45. Coronel-Aguilera CP, San Martín-González MF (2015) Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT 62:187–193

    Article  CAS  Google Scholar 

  46. Pellicer JA, Fortea MI, Trabal J, Rodríguez-López MI, Gabaldón JA, Núñez-Delicado E (2019) Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technol 347:179–185

    Article  CAS  Google Scholar 

  47. Mohammed NK, Tan CP, Abd Manap MY, Muhialdin BJ, Meor Hussin AS (2019) Production of Functional Non-dairy Creamer using Nigella sativa oil Via Fluidized Bed Coating Technology. Food Bioproc Tech 12:1352–1365

    Article  CAS  Google Scholar 

  48. Fang Z, Bhandari B (2010) Encapsulation of polyphenols – a review. Trends Food Sci Tech 21:510–523

    Article  CAS  Google Scholar 

  49. Gouin S (2004) Microencapsulation. Trends Food Sci Tec 15:330–347

    Article  CAS  Google Scholar 

  50. Anwar SH, Kunz B (2011) The influence of drying methods on the stabilization of fish oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. J Food Eng 105:367–378

    Article  CAS  Google Scholar 

  51. Yang M, Liang Z, Wang L, Qi M, Luo Z, Li L (2020) Microencapsulation delivery system in Food industry—challenge and the way forward. Adv Polym Technol 2020:1–14

    Article  CAS  Google Scholar 

  52. Wilkowska A, Ambroziak W, Czyżowska A, Adamiec J (2016) Effect of microencapsulation by spray drying and freeze drying technique on the antioxidant properties of Blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Pol J Food Nutr Sci 66:11–16

    Article  CAS  Google Scholar 

  53. Ozkan G, Franco P, Capanoglu E, De Marco I (2019) PVP/flavonoid coprecipitation by supercritical antisolvent process. Chem Eng Process 146

    Google Scholar 

  54. Desobry SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62:1158–1162

    Article  CAS  Google Scholar 

  55. Sinha VR, Agrawal MK, Kumria R, Bhinge JR (2007) Influence of operational variables on properties of piroxicam pellets prepared by extrusion-spheronization: a technical note Aaps Pharmscitech 8:E137–E141

    Google Scholar 

  56. Saikia S, Mahnot NK, Mahanta CL (2015) Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem 171:144–152

    Article  CAS  PubMed  Google Scholar 

  57. Gursul S, Karabulut I, Durmaz G (2019) Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chem 278:805–810

    Article  CAS  PubMed  Google Scholar 

  58. Rezende Y, Nogueira JP, Narain N (2018) Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chem 254:281–291

    Article  CAS  PubMed  Google Scholar 

  59. Gheonea I, Aprodu I, Cîrciumaru A, Râpeanu G, Bahrim GE, Stănciuc N (2021) Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: evidences on phytochemical profile, stability and food applications. J Food Eng 288

    Google Scholar 

  60. Soh SH, Lee LY (2019) Microencapsulation and nanoencapsulation using Supercritical Fluid (SCF) techniques. Pharmaceutics 11

    Google Scholar 

  61. Zhang Q, Ou C, Ye S, Song X, Luo S (2017) Construction of nanoscale liposomes loaded with melatonin via supercritical fluid technology. J Microencapsul 34:687–698

    Article  CAS  PubMed  Google Scholar 

  62. Visentin A, Rodríguez-Rojo S, Navarrete A, Maestri D, Cocero MJ (2012) Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J Food Eng 109:9–15

    Article  CAS  Google Scholar 

  63. Prosapio V, De Marco I, Scognamiglio M, Reverchon E (2015) Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chem Eng J 277:286–294

    Article  CAS  Google Scholar 

  64. Thote AJ, Gupta RB (2005) Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 1:85–90

    Article  CAS  PubMed  Google Scholar 

  65. Varona S, Martín Á, Cocero MJ, Duarte CMM (2013) Encapsulation of Lavandin Essential Oil in Poly-(ϵ-caprolactones) by PGSS Process. Chem Eng Technol 36:1187–1192

    Article  CAS  Google Scholar 

  66. Ciftci ON, Temelli F (2016) Formation of solid lipid microparticles from fully hydrogenated canola oil using supercritical carbon dioxide. J Food Eng 178:137–144

    Article  CAS  Google Scholar 

  67. Bahrami M, Ranjbarian S (2007) Production of micro- and nano-composite particles by supercritical carbon dioxide. J Supercrit Fluids 40:263–283

    Article  CAS  Google Scholar 

  68. Santos DT, Albarelli JQ, Beppu MM, Meireles MAA (2013) Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res Int 50:617–624

    Article  CAS  Google Scholar 

  69. Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P (2019) Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. Rsc Adv 9:34039–34049

    Article  CAS  Google Scholar 

  70. PTd S, LLM F, CRd M, Holkem AT, Schwan CL, Wigmann ÉF, JdO B, CdBd S (2014) Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural 44:1304–1311

    Article  CAS  Google Scholar 

  71. Favaro-Trindade CS, Okuro PK, de Matos Jr FE (2015) Encapsulation via spray. In: Handbook of encapsulation and controlled release. CRC Press, Boca Raton, pp 71–88

    Chapter  Google Scholar 

  72. Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS (2013) Microencapsulation of microbial cells. J Food Eng 116:369–381

    Article  CAS  Google Scholar 

  73. Gamboa OD, Gonçalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci 1:1732–1739

    Article  CAS  Google Scholar 

  74. Tulini FL, Souza VB, Thomazini M, Silva MP, Massarioli AP, Alencar SM, Pallone EM, Genovese MI, Favaro-Trindade CS (2017) Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with alpha-tocopherol by spray chilling. Food Res Int 95:117–124

    Article  CAS  PubMed  Google Scholar 

  75. Whelehan M, Marison IW (2011) Microencapsulation using vibrating technology. J Microencapsul 28:669–688

    Article  CAS  PubMed  Google Scholar 

  76. Fangmeier M, Lehn DN, Maciel MJ, Volken de Souza CF (2019) Encapsulation of bioactive ingredients by extrusion with vibrating technology: advantages and challenges. Food Bioproc Technol 12:1472–1486

    Article  Google Scholar 

  77. Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release – a review. Int J Food Sci Technol 41:1–21

    Article  CAS  Google Scholar 

  78. Haas PA (1992) Formation of uniform liquid drops by application of vibration to laminar jets. Ind Eng Chem Res 31:959–967

    Article  CAS  Google Scholar 

  79. Heinzen C, Berger A, Marison I (2004) Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In: Fundamentals of cell immobilisation biotechnology. Springer, Netherland, pp 257–275

    Chapter  Google Scholar 

  80. Aizpurua-Olaizola O, Navarro P, Vallejo A, Olivares M, Etxebarria N, Usobiaga A (2016) Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chem 190:614–621

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Z, Zhang R, DJ MC (2016) Encapsulation of β-carotene in alginate-based hydrogel beads: impact on physicochemical stability and bioaccessibility. Food Hydrocoll 61:1–10

    Article  CAS  Google Scholar 

  82. Chew SC, Nyam KL (2016) Oxidative stability of microencapsulated kenaf seed oil using co-extrusion technology. J Am Oil Chem Soc 93:607–615

    Article  CAS  Google Scholar 

  83. Vakarelova M, Zanoni F, Lardo P, Rossin G, Mainente F, Chignola R, Menin A, Rizzi C, Zoccatelli G (2017) Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology. Food Chem 221:289–295

    Article  CAS  PubMed  Google Scholar 

  84. Lavelli V, PSCS H (2019) Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Res Int 119:822–828

    Article  CAS  PubMed  Google Scholar 

  85. Deshmukh R, Wagh P, Naik J (2016) Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: a review. Dry Technol 34:1758–1772

    Article  CAS  Google Scholar 

  86. Hwisa NT, Katakam P, Chandu BR, Adiki SK (2013) Solvent evaporation techniques as promising advancement in microencapsulation. Vedic Res Int Biol Med Chem 1:8–22

    Article  CAS  Google Scholar 

  87. Jeyanthi R, Thanoo BC, Metha RC, DeLuca PP (1996) Effect of solvent removal technique on the matrix characteristics of polylactide/glycolide microspheres for peptide delivery. J Control Release 38:235–244

    Article  CAS  Google Scholar 

  88. Kamali H, Atamanesh M, Kaffash E, Mohammadpour F, Khodaverdi E, Hadizadeh F (2020) Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. J Drug Deliv Sci Technol 57

    Google Scholar 

  89. Zhang Q, Dong Z, Zhao S, Liu Z, Chen G (2021) Ultrasound-assisted gas–liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency. Chem Eng J 405

    Google Scholar 

  90. Chaiyasat P, Chaiyasat A, Teeka P, Noppalit S, Srinorachun U (2013) Preparation of poly(l-lactic acid) microencapsulated Vitamin E. Energy Procedia 34:656–663

    Article  CAS  Google Scholar 

  91. Gupta C, Chawla P, Arora S, Tomar SK, Singh AK (2015) Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method – Milk fortification. Food Hydrocoll 43:622–628

    Article  CAS  Google Scholar 

  92. Chan ES, Zhang Z (2002) Encapsulation of Probiotic Bacteria Lactobacillus Acidophilus by Direct Compression. Food Bioprod Process 80:78–82

    Article  CAS  Google Scholar 

  93. Byl E, Jokicevic K, Kiekens S, Lebeer S, Kiekens F (2020) Strain-specific differences in behaviour among Lacticaseibacillus rhamnosus cell wall mutants during direct compression. Int J Pharm 588:119755

    Article  CAS  PubMed  Google Scholar 

  94. Feng K, Wei Y, Hu T, Linhardt RJ, Zong M, Wu H (2020) Colon-targeted delivery systems for nutraceuticals: a review of current vehicles, evaluation methods and future prospects. Trends Food Sci Tech 102:203–222

    Article  CAS  Google Scholar 

  95. Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518

    Article  CAS  Google Scholar 

  96. Drosou CG, Krokida MK, Biliaderis CG (2017) Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Dry Technol 35:139–162

    Article  CAS  Google Scholar 

  97. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121

    Article  CAS  Google Scholar 

  98. Adamiec J (2009) Moisture sorption characteristics of peppermint oil microencapsulated by spray drying. Dry Technol 27:1363–1369

    Article  CAS  Google Scholar 

  99. Seydel P, Blömer J, Bertling J (2006) Modeling particle formation at spray drying using population balances. Dry Technol 24:137–146

    Article  Google Scholar 

  100. Jafari SM, Assadpoor E, Bhandari B, He Y (2008) Nano-particle encapsulation of fish oil by spray drying. Food Res Int 41:172–183

    Article  CAS  Google Scholar 

  101. Wang Y, Lu Z, Lv F, Bie X (2009) Study on microencapsulation of curcumin pigments by spray drying. Eur Res Technol 229:391–396

    Article  CAS  Google Scholar 

  102. Casanova F, Santos L (2016) Encapsulation of cosmetic active ingredients for topical application–a review. J Microencapsul 33:1–17

    Article  CAS  PubMed  Google Scholar 

  103. Brückner M, Bade M, Kunz B (2007) Investigations into the stabilization of a volatile aroma compound using a combined emulsification and spray drying process. Eur Res Technol 226:137–146

    Article  CAS  Google Scholar 

  104. Correa-Filho LC, Lourenco MM, Moldao-Martins M, Alves VD (2019) Microencapsulation of beta-carotene by spray drying: effect of wall material concentration and drying inlet temperature. Int J Food Sci 2019:8914852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Botrel DA, de Barros Fernandes RV, Borges SV, Yoshida MI (2014) Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res Int 62:344–352

    Article  CAS  Google Scholar 

  106. Jafari SM, He Y, Bhandari B (2007) Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Dry Technol 25:1069–1079

    Article  CAS  Google Scholar 

  107. Delia SC, Chavez GM, Leon-Martinez Frank M, Araceli SP, Irais AL, Franco AA (2019) Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem 272:715–722

    Article  CAS  PubMed  Google Scholar 

  108. Abrahão FR, Rocha LCR, Santos TA, ELd C, LAS P, Borges SV, RGFA P, Botrel DA (2019) Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT 103:116–124

    Article  CAS  Google Scholar 

  109. Zanoni F, Primiterra M, Angeli N, Zoccatelli G (2020) Microencapsulation by spray-drying of polyphenols extracted from red chicory and red cabbage: effects on stability and color properties. Food Chem 307:125535

    Article  CAS  PubMed  Google Scholar 

  110. Maia PDDS, dos Santos BD, da Silva VPF, Miguel MAL, Lacerda ECQ, de Araújo Calado VM, da Silva CC, Finotelli PV, Pierucci APTR (2020) Microencapsulation of a craft beer, nutritional composition, antioxidant stability, and drink acceptance. LWT 133:110104

    Article  CAS  Google Scholar 

  111. Kurozawa LE, Hubinger MD (2017) Hydrophilic food compounds encapsulation by ionic gelation. Curr Opin Food Sci 15:50–55

    Article  Google Scholar 

  112. Patil P, Chavanke D, Wagh M (2012) A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm Sci 4:27–32

    CAS  Google Scholar 

  113. Chan LW, Lee HY, PWS H (2006) Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohyd Polym 63:176–187

    Article  CAS  Google Scholar 

  114. Paques JP (2015) Chapter 3 – alginate nanospheres prepared by internal or external gelation with nanoparticles. In: Sagis LMC (ed) Microencapsulation and microspheres for food applications. Academic Press, San Diego, pp 39–55

    Chapter  Google Scholar 

  115. Belscak-Cvitanovic A, Busic A, Barisic L, Vrsaljko D, Karlovic S, Spoljaric I, Vojvodic A, Mrsic G, Komes D (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and beta-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152

    Article  CAS  Google Scholar 

  116. de Moura SCSR, Berling CL, Germer SPM, Alvim ID, Hubinger MD (2018) Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles. Food Chem 241:317–327

    Article  PubMed  CAS  Google Scholar 

  117. Cutrim CS, Alvim ID, Cortez MAS (2019) Microencapsulation of green tea polyphenols by ionic gelation and spray chilling methods. J Food Sci Tech Mys 56:3561–3570

    Article  CAS  Google Scholar 

  118. Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10:203–211

    Article  Google Scholar 

  119. Lee JS, Kim EJ, Chung D, Lee HG (2009) Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloid Surf B 74:17–22

    Article  CAS  Google Scholar 

  120. Amiri A, Mousakhani-Ganjeh A, Amiri Z, Guo YG, Singh AP, Kenari RE (2020) Fabrication of cumin loaded-chitosan particles: characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chem 310:125821

    Article  CAS  PubMed  Google Scholar 

  121. Hadidi M, Pouramin S, Adinepour F, Haghani S, Jafari SM (2020) Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohyd Polym 236:116075

    Article  CAS  Google Scholar 

  122. Hosseini SM, Hosseini H, Mohammadifar MA, Mortazavian AM, Mohammadi A, Khosravi-Darani K, Shojaee-Aliabadi S, Dehghan S, Khaksar R (2013) Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int J Biol Macromol 62:582–588

    Article  CAS  PubMed  Google Scholar 

  123. Salaun F (2016) Microencapsulation technology for smart textile coatings. Woodhead Publ Ser Te:179–220

    Google Scholar 

  124. Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ (2019) Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 121:1276–1286

    Article  CAS  PubMed  Google Scholar 

  125. Hosseini H, Jafari SM (2020) Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv Colloid Interfac 282:102210

    Article  CAS  Google Scholar 

  126. Verri WA, Vicentini FTMC, Baracat MM, Georgetti SR, Cardoso RDR, Cunha TM, Ferreira SH, Cunha FQ, Fonseca MJV, Casagrande R (2012) Flavonoids as anti-inflammatory and analgesic drugs: mechanisms of action and perspectives in the development of pharmaceutical forms. Stud Nat Prod Chem 36:297–330

    Article  CAS  Google Scholar 

  127. de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid In 9:340–349

    Article  CAS  Google Scholar 

  128. Bastos LPH, Vicente J, dos Santos CHC, de Carvalho MG, Garcia-Rojas EE (2020) Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocoll 102

    Google Scholar 

  129. Tavares L, Norena CPZ (2020) Encapsulation of ginger essential oil using complex coacervation method: coacervate formation, rheological property, and physicochemical characterization. Food Bioproc Tech 13:1405–1420

    Article  CAS  Google Scholar 

  130. de Souza VB, Thomazini M, Barrientos MAE, Nalin CM, Ferro-Furtado R, Genovese MI, Favaro-Trindade CS (2018) Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocoll 77:297–306

    Article  CAS  Google Scholar 

  131. Comunian TA, Nogueira M, Scolaro B, Thomazini M, Ferro-Furtado R, de Castro IA, Favaro-Trindade CS (2018) Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food Chem 252:277–284

    Article  CAS  PubMed  Google Scholar 

  132. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  133. Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci 45:587–605

    Article  CAS  Google Scholar 

  134. Singh H, Thompson A, Liu W, Corredig M (2012) 11 – Liposomes as food ingredients and nutraceutical delivery systems. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, pp 287–318

    Google Scholar 

  135. Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    Article  CAS  PubMed  Google Scholar 

  136. Luo M, Zhang R, Liu L, Chi J, Huang F, Dong L, Ma Q, Jia X, Zhang M (2020) Preparation, stability and antioxidant capacity of nano liposomes loaded with procyandins from lychee pericarp. J Food Eng 284:110065

    Article  CAS  Google Scholar 

  137. Magalhães dos Santos D, Sanches MP, Poffo CM, Parize AL, Sagrera Darelli GJ, Rodrigues de Lima V (2020) Syringic and cinnamic acids antiradical/antioxidant activities as R. ferruginea extract components and membrane physico-chemical influence. J Mol Struct 1220:128749

    Article  CAS  Google Scholar 

  138. Sarabandi K, Mahoonak AS, Hamishehkar H, Ghorbani M, Jafari SM (2019) Protection of casein hydrolysates within nanoliposomes: antioxidant and stability characterization. J Food Eng 251:19–28

    Article  CAS  Google Scholar 

  139. Liu X, Wang P, Zou Y-X, Luo Z-G, Tamer TM (2020) Co-encapsulation of Vitamin C and β-carotene in liposomes: storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Res Int 136:109587

    Article  CAS  PubMed  Google Scholar 

  140. Chen W, Zou M, Ma X, Lv R, Ding T, Liu D (2019) Co-encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. J Food Sci 84:111–120

    CAS  PubMed  Google Scholar 

  141. Huang M, Liang C, Tan C, Huang S, Ying R, Wang Y, Wang Z, Zhang Y (2019) Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct 10:6447–6458

    Article  CAS  PubMed  Google Scholar 

  142. Harrington J, Schaefer M (2014) Extrusion-based microencapsulation for the food industry, in microencapsulation in the. Food Industry:81–84

    Google Scholar 

  143. Sun-Waterhouse D, Zhou J, Miskelly GM, Wibisono R, Wadhwa SS (2011) Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem 126:1049–1056

    Article  CAS  Google Scholar 

  144. Lupo B, Maestro A, Gutiérrez JM, González C (2015) Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: comparison of two gelation mechanisms. Food Hydrocoll 49:25–34

    Article  CAS  Google Scholar 

  145. Reza Mozafari M, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Article  CAS  PubMed  Google Scholar 

  146. Petrović T, Nedović V, Dimitrijević-Branković S, Bugarski B, Lacroix C (2007) Protection of probiotic microorganisms by microencapsulation. Chem Ind Chem Eng Q 13:169–174

    Article  Google Scholar 

  147. Jain S, Winuprasith T, Suphantharika M (2020) Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocoll 104

    Google Scholar 

  148. Ribeiro JS, Veloso CM (2021) Microencapsulation of natural dyes with biopolymers for application in food: a review. Food Hydrocoll 112

    Google Scholar 

  149. Sampaio GLA, Pacheco S, Ribeiro APO, Galdeano MC, Gomes FS, Tonon RV (2019) Encapsulation of a lycopene-rich watermelon concentrate in alginate and pectin beads: characterization and stability. LWT 116

    Google Scholar 

  150. Wang W, Jung J, Zhao Y (2017) Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydr Polym 157:1246–1253

    Article  CAS  PubMed  Google Scholar 

  151. Lim LT, Mendes AC, Chronakis IS (2019) Electrospinning and electrospraying technologies for food applications. Adv Food Nutr Res 88:167–234

    Article  CAS  PubMed  Google Scholar 

  152. Enayati M, Chang M-W, Bragman F, Edirisinghe M, Stride E (2011) Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A Physicochem Eng Asp 382:154–164

    Article  CAS  Google Scholar 

  153. Anu Bhushani J, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Tech 38:21–33

    Article  CAS  Google Scholar 

  154. Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T (2007) Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. J Appl Polym Sci 104:1640–1645

    Article  CAS  Google Scholar 

  155. Fabra MJ, López-Rubio A, Lagaron JM (2016) Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocoll 55:11–18

    Article  CAS  Google Scholar 

  156. Koo SY, Cha KH, Song D-G, Chung D, Pan C-H (2014) Microencapsulation of peppermint oil in an alginate-pectin matrix using a coaxial electrospray system. Int J Food Sci Tech 49:733–739

    Article  CAS  Google Scholar 

  157. Zhang L, Huang J, Si T, Xu RX (2012) Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices 9:595–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. López-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov Food Sci Emerg Technol 13:200–206

    Article  CAS  Google Scholar 

  159. Shekarforoush E, Ajalloueian F, Zeng G, Mendes AC, Chronakis IS (2018) Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mat Lett 228:322–326

    Article  CAS  Google Scholar 

  160. Blanco-Padilla A, López-Rubio A, Loarca-Piña G, Gómez-Mascaraque LG, Mendoza S (2015) Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT 63:1137–1144

    Article  CAS  Google Scholar 

  161. Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A (2015) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341

    Article  CAS  Google Scholar 

  162. Nakhaee Moghadam M, Jamshidi A, Fazly Bazzaz BS, Azizzadeh M, Movaffagh J (2020) Saccharomyces cerevisiae as a delivery system of Zataria multiflora Boiss. Essential oil as a natural preservative for food applications: encapsulation of Iranian Zataria multiflora Boiss. essential oil. J Sci Food Agr

    Google Scholar 

  163. Paramera EI, Karathanos VT, Konteles SJ (2014) Yeast cells and yeast-based materials for microencapsulation. In: Microencapsulation in the food industry: a practical implementation guide. Elsevier Academic Press, pp 267–281

    Google Scholar 

  164. Moghadam MN, Khameneh B, Bazzaz BSF (2019) Saccharomyces cervisiae as an Efficient Carrier for Delivery of Bioactives: a Review. Food Biophys:1–8

    Google Scholar 

  165. de Medeiros FGM, Dupont S, Beney L, Roudaut G, Hoskin RT, MRD P (2019) Efficient stabilisation of curcumin microencapsulated into yeast cells via osmoporation. Appl Microbiol Biot 103:9659–9672

    Article  CAS  Google Scholar 

  166. Czerniak A, Kubiak P, Bialas W, Jankowski T (2015) Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. J Food Eng 167:2–11

    Article  CAS  Google Scholar 

  167. Karaman K (2020) Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: stability of thymoquinone and bioactive properties. Food Chem 313

    Google Scholar 

  168. Fu J, Song L, Guan J, Sun C, Zhou D, Zhu B (2020) Encapsulation of Antarctic krill oil in yeast cell microcarriers: evaluation of oxidative stability and in vitro release. Food Chem 338:128089

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Capanoglu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gültekin Subaşı, B., Vahapoglu, B., Capanoglu, E. (2021). Microencapsulation Methods for Food Antioxidants. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics