Skip to main content

Fetal Left Heart Obstructive Lesions: Aortic Stenosis, Shone’s Complex, and Aortic Arch Obstruction

  • Living reference work entry
  • First Online:
Pediatric Cardiology
  • 20 Accesses

Abstract

This chapter explores left-sided obstructive lesions in the fetus. This includes discussion of aortic stenosis, primarily discussing valvar stenosis with brief coverage of supravalvar aortic stenosis as well. Within this section, critical aortic stenosis and mitral valve dysplasia are discussed. The chapter goes on to include coarctation of the aorta, Shone’s complex, and interrupted aortic arch.

Within each section, we review manifestation of the lesion in obstetric ultrasound, history taking with the role of prenatal genetic testing for specific lesions as well as the role of additional testing for risk stratification and prognostication, details of fetal echocardiography, fetal life follow-up and what to expect during the remainder of the gestation, fetal interventions (if there are any), and expected changes in hemodynamics at birth with recommendations for preparation at delivery and the immediate postnatal course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res. 1985;57(6):811–21.

    Article  CAS  PubMed  Google Scholar 

  2. Benson DW, Martin LJ, Lo CW. Genetics of hypoplastic left heart syndrome. J Pediatr. 2016;173:25–31.

    Article  PubMed  Google Scholar 

  3. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    Article  PubMed  Google Scholar 

  4. Freud LR, et al. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol. 2015;45(3):326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liberman RF, et al. Delayed diagnosis of critical congenital heart defects: trends and associated factors. Pediatrics. 2014;134(2):e373–81.

    Article  PubMed  Google Scholar 

  6. Makikallio K, et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113(11):1401–5.

    Article  PubMed  Google Scholar 

  7. McCaffrey FM, Sherman FS. Prenatal diagnosis of severe aortic stenosis. Pediatr Cardiol. 1997;18(4):276–81.

    Article  CAS  PubMed  Google Scholar 

  8. Simpson JM, Sharland GK. Natural history and outcome of aortic stenosis diagnosed prenatally. Heart. 1997;77(3):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allan LD, Sharland G, Tynan MJ. The natural history of the hypoplastic left heart syndrome. Int J Cardiol. 1989;25(3):341–3.

    Article  CAS  PubMed  Google Scholar 

  10. Danford DA, Cronican P. Hypoplastic left heart syndrome: progression of left ventricular dilation and dysfunction to left ventricular hypoplasia in utero. Am Heart J. 1992;123(6):1712–3.

    Article  CAS  PubMed  Google Scholar 

  11. Hornberger LK, et al. Left heart obstructive lesions and left ventricular growth in the midtrimester fetus. A longitudinal study. Circulation. 1995;92(6):1531–8.

    Article  CAS  PubMed  Google Scholar 

  12. Vogel M, et al. Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops: pathophysiology, outcomes, and preliminary experience with pre-natal cardiac intervention. J Am Coll Cardiol. 2011;57(3):348–55.

    Article  PubMed  Google Scholar 

  13. Rogers LS, et al. Mitral valve dysplasia syndrome: a unique form of left-sided heart disease. J Thorac Cardiovasc Surg. 2011;142(6):1381–7.

    Article  PubMed  Google Scholar 

  14. Laforest B, Nemer M. Genetic insights into bicuspid aortic valve formation. Cardiol Res Pract. 2012;2012:180297.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glick BN, Roberts WC. Congenitally bicuspid aortic valve in multiple family members. Am J Cardiol. 1994;73(5):400–4.

    Article  CAS  PubMed  Google Scholar 

  16. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    Article  CAS  PubMed  Google Scholar 

  17. Donofrio MT, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–242.

    Article  PubMed  Google Scholar 

  18. Fedak PW, et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.

    Article  PubMed  Google Scholar 

  19. Silberbach M, et al. Cardiovascular health in Turner Syndrome: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2018;11(10):e000048.

    Article  PubMed  Google Scholar 

  20. Morris CA, Braddock SR; Council on genetics. Health care supervision for children with Williams synrome. Pediatrics 2020 Feb;145(2):e20193761. https://doi.org/10.1542/ped.2019-3761.

  21. Popowski T, et al. Williams-Beuren syndrome: the prenatal phenotype. Am J Obstet Gynecol. 2011;205(6):e6–8.

    Article  PubMed  Google Scholar 

  22. Michelfelder E, et al. Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation. 2005;112(19):2974–9.

    Article  PubMed  Google Scholar 

  23. Divanovic A, et al. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. J Thorac Cardiovasc Surg. 2011;141(4):988–94.

    Article  PubMed  Google Scholar 

  24. Marshall AC, et al. Aortic valvuloplasty in the fetus: technical characteristics of successful balloon dilation. J Pediatr. 2005;147(4):535–9.

    Article  PubMed  Google Scholar 

  25. Freud LR, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014;130(8):638–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Donofrio MT, et al. Risk-stratified postnatal care of newborns with congenital heart disease determined by fetal echocardiography. J Am Soc Echocardiogr. 2015;28(11):1339–49.

    Article  PubMed  Google Scholar 

  27. Nagasawa H, et al. Time to spontaneous ductus arteriosus closure in full-term neonates. Open Heart. 2016;3(1):e000413.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Simpson JM. Impact of fetal echocardiography. Ann Pediatr Cardiol. 2009;2(1):41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beattie M, et al. Toward improving the fetal diagnosis of coarctation of the aorta. Pediatr Cardiol. 2017;38(2):344–52.

    Article  PubMed  Google Scholar 

  30. Franklin O, et al. Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart. 2002;87(1):67–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharland GK, Chan KY, Allan LD. Coarctation of the aorta: difficulties in prenatal diagnosis. Br Heart J. 1994;71(1):70–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quartermain MD, et al. Left ventricle to right ventricle size discrepancy in the fetus: the presence of critical congenital heart disease can be reliably predicted. J Am Soc Echocardiogr. 2009;22(11):1296–301.

    Article  PubMed  Google Scholar 

  33. Matsui H, et al. Morphological and physiological predictors of fetal aortic coarctation. Circulation. 2008;118(18):1793–801.

    Article  PubMed  Google Scholar 

  34. Carvalho JS, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348–59.

    Article  PubMed  Google Scholar 

  35. Komisar J, et al. Impact of changing indications and increased utilization of fetal echocardiography on prenatal detection of congenital heart disease. Congenit Heart Dis. 2017;12(1):67–73.

    Article  PubMed  Google Scholar 

  36. Bronshtein M, Zimmer EZ, Blazer S. A characteristic cluster of fetal sonographic markers that are predictive of fetal Turner syndrome in early pregnancy. Am J Obstet Gynecol. 2003;188(4):1016–20.

    Article  PubMed  Google Scholar 

  37. Bondy CA, G. Turner Syndrome Study. Care of girls and women with Turner syndrome: a guideline of the Turner Syndrome Study Group. J Clin Endocrinol Metab. 2007;92(1):10–25.

    Article  CAS  PubMed  Google Scholar 

  38. McBride KL, et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6.

    Article  PubMed  Google Scholar 

  39. Gorincour G, et al. Feasibility of fetal cardiac magnetic resonance imaging: preliminary experience. Ultrasound Obstet Gynecol. 2007;29(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  40. Manganaro L, et al. Assessment of congenital heart disease (CHD): is there a role for fetal magnetic resonance imaging (MRI)? Eur J Radiol. 2009;72(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  41. Jansz MS, et al. Metric optimized gating for fetal cardiac MRI. Magn Reson Med. 2010;64(5):1304–14.

    Article  PubMed  Google Scholar 

  42. Lloyd DF, et al. An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn. 2016;36(10):916–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Familiari A, et al. Risk factors for coarctation of the aorta on prenatal ultrasound: a systematic review and meta-analysis. Circulation. 2017;135(8):772–85.

    Article  PubMed  Google Scholar 

  44. Anuwutnavin S, et al. Prenatal sonographic predictors of neonatal coarctation of the aorta. J Ultrasound Med. 2016;35(11):2353–64.

    Article  PubMed  Google Scholar 

  45. Sivanandam S, et al. Right ventricular enlargement in utero: is it coarctation? Pediatr Cardiol. 2015;36(7):1376–81.

    Article  PubMed  Google Scholar 

  46. Pasquini L, et al. Left superior caval vein: a powerful indicator of fetal coarctation. Heart. 2005;91(4):539–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Head CE, et al. Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal life. Heart. 2005;91(8):1070–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kailin JA, et al. Isolated coarctation of the aorta in the fetus: a diagnostic challenge. Echocardiography. 2017;34(12):1768–75.

    Article  PubMed  Google Scholar 

  49. Evers PD, et al. Diagnostic approach in fetal coarctation of the aorta: a cost-utility analysis. J Am Soc Echocardiogr. 2017;30(6):589–94.

    Article  PubMed  Google Scholar 

  50. Zeng S, et al. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016;6:39304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lara DA, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016;48(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  52. Costello JM, et al. Birth before 39 weeks' gestation is associated with worse outcomes in neonates with heart disease. Pediatrics. 2010;126(2):277–84.

    Article  PubMed  Google Scholar 

  53. Shone JD, et al. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol. 1963;11:714–25.

    Article  CAS  PubMed  Google Scholar 

  54. Popescu BA, et al. Shone’s syndrome diagnosed with echocardiography and confirmed at pathology. Eur J Echocardiogr. 2008;9(6):865–7.

    PubMed  Google Scholar 

  55. Bolling SF, et al. Shone’s anomaly: operative results and late outcome. Ann Thorac Surg. 1990;49(6):887–93.

    Article  CAS  PubMed  Google Scholar 

  56. Zucker N, Levitas A, Zalzstein E. Prenatal diagnosis of Shone’s syndrome: parental counseling and clinical outcome. Ultrasound Obstet Gynecol. 2004;24(6):629–32.

    Article  CAS  PubMed  Google Scholar 

  57. Backer CL, Mavroudis C. Congenital heart surgery nomenclature and database project: patent ductus arteriosus, coarctation of the aorta, interrupted aortic arch. Ann Thorac Surg. 2000;69(4 Suppl):S298–307.

    Article  CAS  PubMed  Google Scholar 

  58. Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959;58:407–13.

    Article  CAS  PubMed  Google Scholar 

  59. Samanek M, Voriskova M. Congenital heart disease among 815,569 children born between 1980 and 1990 and their 15-year survival: a prospective Bohemia survival study. Pediatr Cardiol. 1999;20(6):411–7.

    Article  CAS  PubMed  Google Scholar 

  60. Vogel M, et al. Fetal diagnosis of interrupted aortic arch. Am J Cardiol. 2010;105(5):727–34.

    Article  PubMed  Google Scholar 

  61. Axt-Fliedner R, et al. Fetal and neonatal diagnosis of interrupted aortic arch: associations and outcomes. Fetal Diagn Ther. 2011;30(4):299–305.

    Article  PubMed  Google Scholar 

  62. Hill GD, et al. Disparities in the prenatal detection of critical congenital heart disease. Prenat Diagn. 2015;35(9):859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oosterhof T, et al. Associated factors and trends in outcomes of interrupted aortic arch. Ann Thorac Surg. 2004;78(5):1696–702.

    Article  PubMed  Google Scholar 

  64. Van Praagh R, et al. Interrupted aortic arch: surgical treatment. Am J Cardiol. 1971;27(2):200–11.

    Article  PubMed  Google Scholar 

  65. Skalski JH, et al. Truncus arteriosus communis associated with interrupted aortic arch: a report on two uncommon cases. Thorac Cardiovasc Surg. 1992;40(2):92–5.

    Article  CAS  PubMed  Google Scholar 

  66. Murin P, et al. Aortopulmonary window associated with interrupted aortic arch: report of surgical repair of eight cases and review of literature. Thorac Cardiovasc Surg. 2012;60(3):215–20.

    Google Scholar 

  67. Volpe P, et al. Prenatal diagnosis of interruption of the aortic arch and its association with deletion of chromosome 22q11. Ultrasound Obstet Gynecol. 2002;20(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  68. Mahle WT, et al. Endorsement of Health and Human Services recommendation for pulse oximetry screening for critical congenital heart disease. Pediatrics. 2012;129(1):190–2.

    Article  PubMed  Google Scholar 

  69. Kovacevic A, et al. Counseling for prenatal congenital heart disease-recommendations based on empirical assessment of counseling success. Front Pediatr. 2020;8:26.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zyblewski SC, et al. Chromosomal anomalies influence parental treatment decisions in relation to prenatally diagnosed congenital heart disease. Pediatr Cardiol. 2009;30(8):1105–11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey Stiver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stiver, C., Texter, K. (2023). Fetal Left Heart Obstructive Lesions: Aortic Stenosis, Shone’s Complex, and Aortic Arch Obstruction. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics