Skip to main content
  • 65 Accesses

Abstract

Human Immunodeficiency Virus (HIV) retinopathy, also called Acquired Immunodeficiency Syndrome (AIDS) retinopathy, is a noninfectious retinal microvasculopathy and the most common ocular manifestation of HIV infection. Its primary significance is the strong correlation with the degree of immunosuppression, occurring in over 50% of patients with AIDS (acquired immunodeficiency syndrome). While HIV retinopathy does not by itself constitute AIDS, it is typically found in patients with a CD4+ T-lymphocyte count (CD4+ count) of <200 cells/mL, which is an AIDS-defining condition and a level of immunosuppression at which ocular opportunistic infections such as cytomegalovirus (CMV) retinitis become much more common. HIV retinopathy is characterized by cotton wool spots (the most common manifestation), dot-blot and flame-shaped hemorrhages, white-centered hemorrhages, and capillary nonperfusion. Cotton wool spots have a white, feathery appearance, may be single or multiple, and usually vary from 150 to 350 microns in size and are confined to the posterior pole. They are usually asymptomatic. HIV retinopathy has a lengthy differential diagnosis. Reversal of HIV retinopathy may be a helpful sign of a positive response to combination antiretroviral therapy (cART), and widespread use of cART since the 1990s has resulted in a much lower incidence of both HIV retinopathy and ocular opportunistic infections. However, as AIDS has evolved from a terminal into a chronic and manageable disease, it is clear that HIV infection causes chronic inflammation and immune activation that may cause accelerated aging despite continued viral suppression. Accelerated biological aging may include a neurocognitive decline in HIV-infected individuals. Functional and structural retina changes in the absence of ocular opportunistic infections or visible noninfectious HIV retinopathy may manifest as subtle diminution in contrast sensitivity, visual field defects, and thinning of the peripapillary retinal nerve fiber layer, collectively known as “HIV-associated neuroretinal disorder” (HIV-NRD). Studies have suggested that HIV-NRD increases the risk for visual impairment, blindness, decreased quality of life, and even mortality. Thus, techniques for identifying HIV-NRD will become increasingly important in the management of individuals living with HIV/AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jabs DA. Ocular manifestations of HIV infection. Trans Am Ophthalmol Soc. 1995;93:623–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Holland GN, Gottlieb MS, Yee RD, et al. Ocular disorders associated with a new severe acquired cellular immunodeficiency syndrome. Am J Ophthalmol. 1982;93:393–402.

    Article  CAS  PubMed  Google Scholar 

  3. Holland GN, Pepose JS, Pettit TH, Gottlieb MS, Yee RD, Foos RY. Acquired immune deficiency syndrome. Ocular manifestations. Ophthalmology. 1983;90:859–73.

    Article  CAS  PubMed  Google Scholar 

  4. Pepose JS, Holland GN, Nestor MS, et al. Acquired immune deficiency syndrome. Pathogenic mechanisms of ocular disease. Ophthalmology. 1985;92:472–84.

    Article  CAS  PubMed  Google Scholar 

  5. Kuppermann BD, Petty JG, Richman DD, et al. Correlation between CD4+ counts and prevalence of cytomegalovirus retinitis and human immunodeficiency virus-related noninfectious retinal vasculopathy in patients with acquired immunodeficiency syndrome. Am J Ophthalmol. 1993;115:575–82.

    Article  CAS  PubMed  Google Scholar 

  6. Freeman WR, Lerner CW, Mines JA, et al. A prospective study of the ophthalmologic findings in the acquired immune deficiency syndrome. Am J Ophthalmol. 1984;97:133–42.

    Article  CAS  PubMed  Google Scholar 

  7. Mansour AM, Jampol LS, et al. Cotton-wool spots in acquired immunodeficiency syndrome compared with diabetes mellitus, systemic hypertension and central retinal vein occlusion. Arch Ophthalmol. 1988;106:1074–7.

    Article  CAS  PubMed  Google Scholar 

  8. Rosenberg PR, Uliss AE, Friedland GH, et al. Acquired immunodeficiency syndrome. Ophthalmic manifestations in ambulatory patients. Ophthalmology. 1983;90:874–8.

    Article  CAS  PubMed  Google Scholar 

  9. Romano MR, Valldeperas X, Romano F. Bilateral ischemic maculopathy in a patient with AIDS. Eur J Ophthalmol. 2006;16:761–3.

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham ET Jr, Levinson RD, Jampol LM, et al. Ischemic maculopathy in patients with acquired immunodeficiency syndrome. Am J Ophthalmol. 2001;132:727–33.

    Article  PubMed  Google Scholar 

  11. Akduman L, Feiner MA, Olk RJ, Kaplan HJ. Macular ischemia as a cause of decreased vision in a patient with acquired immunodeficiency syndrome. Am J Ophthalmol. 1997;124:699–702.

    Article  CAS  PubMed  Google Scholar 

  12. Shah KH, Holland GN, Yu F, et al. Contrast sensitivity and color vision in HIV-infected individuals without infectious retinopathy. Am J Ophthalmol. 2006;142:284–92.

    Article  PubMed  Google Scholar 

  13. Iwasaki Y, Yamamoto N, Kawaguchi T, et al. Human immunodeficiency virus-related retinal microangiopathy and systemic cytomegalovirus disease association. Jpn J Ophthalmol. 2013 Jul;57(4):372–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lenci LT, Chin EK, Almeida DR. Central retinal artery occlusion in a young HIV-infected patient on highly active antiretroviral therapy. Retin Cases Brief Rep. 2017;11:160–2.

    Article  PubMed  Google Scholar 

  15. Erdol H, Turk A, Caylan R. An unusual cause of central retinal artery occlusion: acquired immunodeficiency syndrome. Eur J Ophthalmol. 2007;17:671–3.

    Article  CAS  PubMed  Google Scholar 

  16. Bansal R, Jain S, Gupta V, et al. Bilateral central retinal artery occlusion as presenting manifestation of human immunodeficiency virus infection. Indian J Ophthalmol. 2018;66:466–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wen F, Chen X, Liao R. Bilateral central retinal vein occlusions in a Chinese patient with HIV-infection. Int Ophthalmol. 2001;24(3):173–5.

    Article  CAS  PubMed  Google Scholar 

  18. Dunn JP, Yamashita A, Kempen JH, Jabs DA. Retinal vascular occlusion in patients infected with human immunodeficiency virus. Retina. 2005;25:759–66.

    Article  PubMed  Google Scholar 

  19. Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med. 1997;337:734–9.

    Article  CAS  PubMed  Google Scholar 

  20. Soriano V, Dona C, Rodriguez-Rosado R, et al. Discontinuation of secondary prophylaxis for opportunistic infections in HIV-infected patients receiving highly active antiretroviral therapy. AIDS. 2000;14:383–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jabs DA, Green WR, Fox R, et al. Ocular manifestations of acquired immune deficiency syndrome. Ophthalmology. 1989;96:1092–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shah SU, Kerkar SP, Pazare AR. Evaluation of ocular manifestations and blindness in HIV/AIDS patients on HAART in a tertiary care hospital in western India. Br J Ophthalmol. 2009;93:88–90.

    Article  CAS  PubMed  Google Scholar 

  23. Accorinti M, Pirraglia MP, Corradi R, et al. Changing patterns of ocular manifestations in HIV seropositive patients treated with HAART. Eur J Ophthalmol. 2006;16:728–32.

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg DE, Smithen LM, Angelilli A, Freeman WR. HIV-associated retinopathy in the HAART era. Retina. 2005;25:633–49.

    Article  PubMed  Google Scholar 

  25. Jabs DA, Van Natta ML, Kempen JH, et al. Characteristics of patients with cytomegalovirus retinitis in the era of highly active antiretroviral therapy. Am J Ophthalmol. 2002;133:48–61.

    Article  PubMed  Google Scholar 

  26. Freeman WR, Chen A, Henderly DE, et al. Prevalence and significance of acquired immunodeficiency syndrome-related retinal microvasculopathy. Am J Ophthalmol. 1989;107:229–35.

    Article  CAS  PubMed  Google Scholar 

  27. Newsome DA, Green WR, Miller ED, Kiessling LA, et al. Microvascular aspects of acquired immune deficiency syndrome retinopathy. Am J Ophthalmol. 1984;98:590–601.

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal A, Invernizzi A, Acquistapace A, … OCTA Study Group. Analysis of retinochoroidal vasculature in human immunodeficiency virus infection using spectral-domain OCT angiography. Ophthalmology. 2017;124:1718–22.

    Google Scholar 

  29. Levinson RD, Vann R, Davis JL, et al. Chronic multifocal retinal infiltrates in patients infected with human immunodeficiency virus. Am J Ophthalmol. 1998;125:312–24.

    Article  CAS  PubMed  Google Scholar 

  30. Henderson HW, Davidson F, Mitchell SM. Intraocular inflammation and the diffuse infiltrative lymphocytosis syndrome. Am J Ophthalmol. 1998;126(3):462–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kestelyn P, Lepage P, Karita E, Van de Perre P. Ocular manifestations of infection with the human immunodeficiency virus in an African pediatric population. Ocul Immunol Inflamm. 2000;8:263–73.

    Article  CAS  PubMed  Google Scholar 

  32. Brown GC, Brown MM, Hiller T, et al. Cotton-wool spots. Retina. 1985;5:206–14.

    Article  CAS  PubMed  Google Scholar 

  33. Vrabec TR. Posterior segment manifestations of HIV/AIDS. Surv Ophthalmol. 2004;49:131–57.

    Article  PubMed  Google Scholar 

  34. Joseph J, Sharma S, Narayanan R. Endogenous Cryptococcus neoformans endophthalmitis with subretinal abscess in a HIV-infected man. Indian J Ophthalmol. 2018;66(7):1015–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abalem MF, Carricondo PC, Rao RC. Bullseye retinopathy from antiretroviral therapy. Ophthalmology. 2017;124:1539.

    Article  PubMed  Google Scholar 

  36. Papavasileiou E, Younis S, Zygoura V, et al. Ritonavir-associated toxicity mimicking retinitis pigmentosa in an IV-infected patient on highly active antiretroviral therapy. Retin Cases Brief Rep. 2017;11:306–9.

    Article  PubMed  Google Scholar 

  37. Faure C, Paques M, Audo I. Electrophysiological features and multimodal imaging in ritonavir-related maculopathy. Doc Ophthalmol. 2017;135(3):241–8.

    Article  PubMed  Google Scholar 

  38. Roe RH, Jumper JM, Gualino V, et al. Retinal pigment epitheliopathy, macular telangiectasis, and intraretinal crystal deposits in HIV-positive patients receiving ritonavir. Retina. 2011;31(3):559–65.

    Google Scholar 

  39. Mesquita LRC, da Fonseca MLG, da Silva RM, Morizot EH. Panretinal ritonavir-induced retinopathy: a report of long-term use. Retin Cases Brief Rep. 2021;15:65–67.

    Google Scholar 

  40. Arroyo JG, Irvine AR. Retinal distortion and cotton-wool spots associated with epiretinal membrane contraction. Ophthalmology. 1995;102:662–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tso MOM, Jampol L. Pathophysiology of hypertensive retinopathy. Ophthalmology. 1982;89:1132–45.

    Article  CAS  PubMed  Google Scholar 

  42. McLeod D, Marshall J, Kohner EM, Bird AC. The role of axoplasmic transport in the pathogenesis of retinal cotton wool spots. Br J Ophthalmol. 1977;61:177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCleod D. Why cotton wool spots should not be regarded as retinal nerve fibre layer infarcts. Br J Ophthalmol. 2005;89:229–37.

    Article  Google Scholar 

  44. Glasgow BJ, Weisberger AK. A quantitative and cartographic study of retinal microvasculopathy in acquired immunodeficiency syndrome. Am J Ophthalmol. 1994;15(118):46–56.

    Article  Google Scholar 

  45. Engstrom RS Jr, Holland GN, Hardy WD, Meiselman HJ. Hemorheologic abnormalities in patients with human immunodeficiency virus infection and ophthalmic microvasculopathy. Am J Ophthalmol. 1990;109:153–61.

    Article  PubMed  Google Scholar 

  46. Kim A, Dadgostar H, Holland GN, et al. Hemorheologic abnormalities associated with HIV infection: altered erythrocyte aggregation and deformability. Invest Ophthalmol Vis Sci. 2006;47:3927–32.

    Article  PubMed  Google Scholar 

  47. Pomerantz RJ, Kuritzkes DR, de la Monte SM, et al. Infection of the retina by human immunodeficiency virus type I. N Engl J Med. 1987;317:1643–7.

    Article  CAS  PubMed  Google Scholar 

  48. Dadgostar H, Holland GN, Huang X, et al. Hemorheologic abnormalities associated with HIV infection: in vivo assessment of retinal microvascular blood flow. Invest Ophthalmol Vis Sci. 2006;47:3933–8.

    Article  PubMed  Google Scholar 

  49. Goldenberg DT, Holland GN, Cumberland WG, et al. An assessment of polymorphonuclear leukocyte rigidity in HIV-infected individuals after immune recovery. Invest Ophthalmol Vis Sci. 2002;43:1857–61.

    PubMed  Google Scholar 

  50. Hogg R, Lima V, Sterne JA, et al. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372:293–9.

    Article  Google Scholar 

  51. Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci. 2014;69:833–42.

    Article  PubMed  Google Scholar 

  52. Kitagaki T, Sato T, Hirai J, et al. A case of proliferative diabetic retinopathy with HIV infection in which HAART possibly influenced the prognosis of visual function. Case Rep Ophthalmol. 2016;7:239–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geier SA, Schielke E, Tatsch K, Sadri I, Bogner JR, Hammel G, et al. Brain HMPAO-SPECT and ocular microangiopathic syndrome in HIV-1-infected patients. AIDS. 1993;7:1589–94.

    Article  CAS  PubMed  Google Scholar 

  54. Gallant J, Hsue PY, Shreay S, Meyer N. Comorbidities among US patients with prevalent HIV infection – a trend analysis. J Infect Dis. 2017;216:1525–33.

    PubMed  Google Scholar 

  55. Gilbert JM, Fitch KV, Grinspoon SK. HIV-related cardiovascular disease, statins, and the REPRIEVE trial. Top Antivir Med. 2015;23:146–9.

    PubMed  Google Scholar 

  56. Hamzah L, Jones R, Post FA. Optimizing antiretroviral regimens in chronic kidney disease. Curr Opin Infect Dis. 2019;32:1–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J. Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care. 2017;5:e000304.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jabs DA, Van Natta ML, Sezgin E, Pak JW, Danis R. Prevalence of intermediate-stage age-related macular degeneration in patients with the acquired immunodeficiency syndrome. Am J Ophthalmol. 2015;159:1115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jabs DA, Drye L, Van Natta ML, Thorne JE, Holland GN. Incidence and long-term outcomes of the human immunodeficiency virus neuroretinal disorder in patients with AIDS. Ophthalmology. 2015;122:760–8.

    Article  PubMed  Google Scholar 

  60. Jabs DA, Van Natta ML, Pak JW, Danis RP, Hunt PW. Incidence of intermediate-stage age-related macular degeneration in patients with acquired immunodeficiency syndrome. Am J Ophthalmol. 2017;179:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jabs DA, Van Natta ML, Pak JW, et al. Association of retinal vascular caliber and age-related macular degeneration in patients with the acquired immunodeficiency syndrome. Invest Ophthalmol Vis Sci. 2018;59(2):904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ikram MD, Ong YT, Cheung WTY. Retinal vascular caliber measurements: clinical significance, current knowledge, and future perspectives. Ophthalmologica. 2013;229:125–36.

    Article  PubMed  Google Scholar 

  63. Wong TY, Islam A, Klein R, et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the Multi-Ethnic Study of Atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006;47:2341–50.

    Article  PubMed  Google Scholar 

  64. Gangaputra S, Kaylani PS, Fawzi AA, … Studies of the Ocular Complications of AIDS Research Group. Retinal vessel caliber among people with the acquired immunodeficiency syndrome: relationships with disease-associated factors and mortality. Am J Ophthalmol. 2012;153:434–44.

    Google Scholar 

  65. Jabs DA, Van Natta ML, Trang G, et al. Association of systemic inflammation with retinal vascular caliber in patients with AIDS. Invest Ophthalmol Vis Sci. 2019;60:2218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Freeman WR, Van Natta ML, Jabs D, et al. Vision function in HIV-infected individuals without retinitis: report of the Studies of Ocular Complications of AIDS Research Group. Am J Ophthalmol. 2008;145:453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arantes TE, Garcia CR, Tavares IM, Mello PA, Muccioli C. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis. Retina. 2012;32:152–9.

    Article  PubMed  Google Scholar 

  68. Faria E, Arantes TE, Garcia CR, et al. Structural and functional assessment in HIV-infected patients using optical coherence tomography and frequency-doubling technology perimetry. Am J Ophthalmol. 2010;149:571–6.

    Article  Google Scholar 

  69. Kalyani PS, Holland GN, Fawzi AA, et al. Association between retinal nerve fiber layer thickness and abnormalities of vision in people with human immunodeficiency virus infection. Am J Ophthalmol. 2012;153:734–42.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kozak I, Bartsch DU, Cheng L, et al. Objective analysis of retinal damage in HIV-positive patients in the HAART era using OCT. Am J Ophthalmol. 2005;139:295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kozak I, Sample PA, Hao J, et al. Machine learning classifiers detect subtle field defects in eyes of HIV individuals. Trans Am Ophthalmol Soc. 2007;105:111–8.

    PubMed  PubMed Central  Google Scholar 

  72. Pathai S, Lawn SD, Weiss HA, et al. Retinal nerve fibre layer thickness and contrast sensitivity in HIV-infected individuals in South Africa: a case-control study. PLoS One. 2013;8:e7.

    Article  Google Scholar 

  73. Ashraf DC, May KP, Holland GN, … Studies of the Ocular Complications of AIDS Research Group. Relationship between human immunodeficiency virus neuroretinal disorder and vision-specific quality of life among people with AIDS. Ophthalmology. 2015;122:2560–7.

    Google Scholar 

  74. Kalyani PS, Fawzi AA, Gangaputra S, et al. Retinal vessel caliber among people with acquired immunodeficiency syndrome: relationships with visual function. Am J Ophthalmol. 2012;153:428–33.

    Article  PubMed  Google Scholar 

  75. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28:348–68.

    Article  CAS  PubMed  Google Scholar 

  76. Tenhula WN, Xu SZ, Madigan MC, Heller K, Freeman WR, Sadun AA. Morphometric comparisons of optic nerve axon loss in acquired immunodeficiency syndrome. Am J Ophthalmol. 1992;113:14–20.

    Article  CAS  PubMed  Google Scholar 

  77. Kaul M, Lipton SA. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol. 2006;1:138–51.

    Article  PubMed  Google Scholar 

  78. Jabs DA, Drye L, Van Natta ML, … Studies of the Ocular Complications of AIDS Research Group. Incidence and long-term outcomes of the human immunodefıciency virus neuroretinal disorder in patients with AIDS Ophthalmology. 2015;122:760–8.

    Google Scholar 

  79. Demirkaya N, Wit FWNM, van Den Berg TJTP, et al. HIV-associated neuroretinal disorder in patients with well suppressed HIV infection: a comparative cohort study. Retina. 2016;57:1388–97.

    CAS  Google Scholar 

  80. Cetin EN, Sayin Kutlu S, Parca O, et al. The thicknesses of choroid, macular segments, peripapillary retinal nerve fiber layer, and retinal vascular caliber in HIV-1-infected patients without infectious retinitis. Retina. 2019;39:1416–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Dunn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dunn, J.P. (2022). HIV Retinopathy. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics