Skip to main content

Aqueous Humor and the Dynamics of Its Flow: Mechanisms and Routes of Aqueous Humor Drainage

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

This chapter provides an updated review on anatomy and physiology of aqueous production and outflow geared toward the clinician. The composition and flow pathways for aqueous humor are described, followed by a detailed discussion of the clinical anatomy, histology, and ultrastructure of the ciliary body, including the anatomical basis for the blood-aqueous barrier. The principal pathways employed for movement of ions and fluid from the ciliary body microvasculature to secretion of aqueous humor by the ciliary epithelial layers are provided in detail. Emphasis is placed on pathways and mechanisms amenable to therapeutic intervention in glaucoma.

The clinical anatomy, histology, and ultrastructure of the aqueous outflow pathways are then described, with emphasis on correlating anatomical structure with features seen by gonioscopy. The anatomy of the conventional or trabecular outflow pathway and uveoscleral outflow pathway is detailed. The roles of ciliary muscle in regulation of the trabecular and uveoscleral outflow are presented, along with more recent discoveries including the funneling effect and the segmental nature of trabecular outflow. Emphasis is again placed on mechanisms and pathways exploited for reduction of intraocular pressure in the glaucomas. The chapter concludes with a concise discussion of current consensus on the location and generation of aqueous outflow resistance in the normal and glaucomatous eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camelo S, Kezic J, McMenamin PG. Anterior chamber-associated immune deviation: a review of the anatomical evidence for the afferent arm of this unusual experimental model of ocular immune responses. Clin Exp Ophthalmol. 2005;33(4):426–32.

    Article  PubMed  Google Scholar 

  2. Nickla DL, Wildsoet CF, Troilo D. Diurnal rhythms in intraocular pressure, axial length, and choroidal thickness in a primate model of eye growth, the common marmoset. Invest Ophthalmol Vis Sci. 2002;43(8):2519–28.

    PubMed  Google Scholar 

  3. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  4. Smith DW, Lee CJ, Gardiner BS. No flow through the vitrous humor: how strong is the evidence? Prog Retin Eye Res. In Press, 2020;100845. https://doi.org/10.1016/j.preteyeres.2020.100845

  5. Varma SD, Kumar S, Richards RD. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci U S A. 1979;76(7):3504–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy DV, Rosenberg C, Kinsey VE. Steady state distribution of free amino acids in the aqueous humours, vitreous body and plasma of the rabbit. Exp Eye Res. 1961;1:175–91.

    Article  CAS  PubMed  Google Scholar 

  7. Riley MV. The chemistry of aqueous humor. In: Anderson RE, editor. Biochemistry of the eye. Place of publication not identified: American Academy of Ophthalmology; 1983.

    Google Scholar 

  8. Russell P, Epstein DL. Protein analysis of monkey aqueous humor. Curr Eye Res. 1992;11(12):1239–43.

    Article  CAS  PubMed  Google Scholar 

  9. Tripathi RC, Millard CB, Tripathi BJ. Protein composition of human aqueous humor: SDS-PAGE analysis of surgical and post-mortem samples. Exp Eye Res. 1989;48(1):117–30.

    Article  CAS  PubMed  Google Scholar 

  10. Tripathi RC, Borisuth NS, Tripathi BJ, Gotsis SS. Quantitative and qualitative analyses of transferrin in aqueous humor from patients with primary and secondary glaucomas. Invest Ophthalmol Vis Sci. 1992;33(10):2866–73.

    CAS  PubMed  Google Scholar 

  11. Freddo TF, Bartels SP, Barsotti MF, Kamm RD. The source of proteins in the aqueous humor of the normal rabbit. Invest Ophthalmol Vis Sci. 1990;31(1):125–37.

    CAS  PubMed  Google Scholar 

  12. Barsotti MF, Bartels SP, Freddo TF, Kamm RD. The source of protein in the aqueous humor of the normal monkey eye. Invest Ophthalmol Vis Sci. 1992;33(3):581–95.

    CAS  PubMed  Google Scholar 

  13. Bert RJ, Caruthers SD, Jara H, Krejza J, Melhem ER, Kolodny NH, et al. Demonstration of an anterior diffusional pathway for solutes in the normal human eye with high spatial resolution contrast-enhanced dynamic MR imaging. Invest Ophthalmol Vis Sci. 2006;47(12):5153–62.

    Article  PubMed  Google Scholar 

  14. Freddo TF. Intercellular junctions of the iris epithelia in Macaca mulatta. Invest Ophthalmol Vis Sci. 1984;25(9):1094–104.

    CAS  PubMed  Google Scholar 

  15. Doss EW, Ward KA, Koretz JF. Investigation of the “fines” hypothesis of primary open-angle glaucoma: the possible role of alpha-crystallin. Ophthalmic Res. 1998;30(3):142–56.

    Article  CAS  PubMed  Google Scholar 

  16. Russell P, Koretz J, Epstein DL. Is primary open angle glaucoma caused by small proteins? Med Hypotheses. 1993;41(5):455–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sit AJ, Gong H, Ritter N, Freddo TF, Kamm R, Johnson M. The role of soluble proteins in generating aqueous outflow resistance in the bovine and human eye. Exp Eye Res. 1997;64(5):813–21.

    Article  CAS  PubMed  Google Scholar 

  18. Freddo TF, Raviola G. The homogeneous structure of blood vessels in the vascular tree of Macaca mulatta iris. Invest Ophthalmol Vis Sci. 1982;22(3):279–91.

    CAS  PubMed  Google Scholar 

  19. Freddo TF, Raviola G. Freeze-fracture analysis of the interendothelial junctions in the blood vessels of the iris in Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;23(2):154–67.

    CAS  PubMed  Google Scholar 

  20. Raviola G, Butler JM. Asymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels. Invest Ophthalmol Vis Sci. 1985;26(5):597–608.

    CAS  PubMed  Google Scholar 

  21. Ethier CR, Chan DW. Cationic ferritin changes outflow facility in human eyes whereas anionic ferritin does not. Invest Ophthalmol Vis Sci. 2001;42(8):1795–802.

    CAS  PubMed  Google Scholar 

  22. Coca-Prados M, Escribano J, Ortego J. Differential gene expression in the human ciliary epithelium. Prog Retin Eye Res. 1999;18(3):403–29.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Kirby D, Dufresne C, Chen Y, Turner R, Ferri S, et al. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid. Proteomics. 2016;16(7):1146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP. Proteome analysis of human aqueous humor. Invest Ophthalmol Vis Sci. 2010;51(10):4921–31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murthy KR, Rajagopalan P, Pinto SM, Advani J, Murthy PR, Goel R, et al. Proteomics of human aqueous humor. Omics J Integr Biol. 2015;19(5):283–93.

    Article  CAS  Google Scholar 

  26. Murrell WJ, Shihab Z, Lamberts DW, Avera B. The corneal endothelium and central corneal thickness in pigmentary dispersion syndrome. Arch Ophthalmol Chic Ill 1960. 1986;104(6):845–6.

    Article  CAS  Google Scholar 

  27. Freddo TF, Chaum E. The ciliary body. In: Anatomy of the eye and orbit: the clinical essentials. Philadelphia: LWW; 2017.

    Google Scholar 

  28. Freddo TF, Chaum E. Embryology of the eye and orbit. In: Anatomy of the eye and orbit: the clinical essentials. 1st ed. Philadelphia: LWW; 2017.

    Google Scholar 

  29. Morrison JC, Van Buskirk EM. Ciliary process microvasculature of the primate eye. Am J Ophthalmol. 1984;97(3):372–83.

    Article  CAS  PubMed  Google Scholar 

  30. Cole DF. Secretion of the aqueous humour. Exp Eye Res. 1977;25(Suppl):161–76.

    Article  CAS  PubMed  Google Scholar 

  31. Funk R, Rohen JW. Intraocular microendoscopy of the ciliary-process vasculature in albino rabbits: effects of vasoactive agents. Exp Eye Res. 1987;45(4):597–606.

    Article  CAS  PubMed  Google Scholar 

  32. Bill A. Autonomic nervous control of uveal blood flow. Acta Physiol Scand. 1962;56:70–81.

    Article  CAS  PubMed  Google Scholar 

  33. Bill A, Linder M, Linder J. The protective role of ocular sympathetic vasomotor nerves in acute arterial hypertension. Bibl Anat. 1977;16(Pt 2):30–5.

    Google Scholar 

  34. Bill A, Bárány EH. Gross facility, facility of conventional routes, and pseudofacility of aqueous humor outflow in the cynomolgus monkey. The reduction in aqueous humor formation rate caused by moderate increments in intraocular pressure. Arch Ophthalmol Chic Ill 1960. 1966;75(5):665–73.

    Article  CAS  Google Scholar 

  35. Brubaker RF. The measurement of pseudofacility and true facility by constant pressure perfusion in the normal rhesus monkey eye. Investig Ophthalmol. 1970;9(1):42–52.

    CAS  Google Scholar 

  36. Kupfer C, Sanderson P. Determination of pseudofacility in the eye of man. Arch Ophthalmol Chic Ill 1960. 1968;80(2):194–6.

    Article  CAS  Google Scholar 

  37. Kaufman PL, Bill A, Bárány EH. Formation and drainage of aqueous humor following total iris removal and ciliary muscle disinsertion in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1977;16(3):226–9.

    CAS  PubMed  Google Scholar 

  38. Raviola G, Raviola E. Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci. 1978;17(10):958–81.

    CAS  PubMed  Google Scholar 

  39. Flügel C, Lütjen-Drecoll E. Presence and distribution of Na+/K+-ATPase in the ciliary epithelium of the rabbit. Histochemistry. 1988;88(3–6):613–21.

    Article  PubMed  Google Scholar 

  40. Lütjen-Drecoll E, Lönnerholm G, Eichhorn M. Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1983;220(6):285–91.

    Article  Google Scholar 

  41. Maren TH. The rates of movement of Na+, Cl−, and HCO-3 from plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Investig Ophthalmol. 1976;15(5):356–64.

    CAS  Google Scholar 

  42. Freddo TF. Intercellular junctions of the ciliary epithelium in anterior uveitis. Invest Ophthalmol Vis Sci. 1987;28(2):320–9.

    CAS  PubMed  Google Scholar 

  43. Green K, Bountra C, Georgiou P, House CR. An electrophysiologic study of rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 1985;26(3):371–81.

    CAS  PubMed  Google Scholar 

  44. Coffey KL, Krushinsky A, Green CR, Donaldson PJ. Molecular profiling and cellular localization of connexin isoforms in the rat ciliary epithelium. Exp Eye Res. 2002;75(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  45. McLaughlin CW, Zellhuber-McMillan S, Macknight ADC, Civan MM. Electron microprobe analysis of ouabain-exposed ciliary epithelium: PE-NPE cell couplets form the functional units. Am J Physiol Cell Physiol. 2004;286(6):C1376–89.

    Article  CAS  PubMed  Google Scholar 

  46. Calera MR, Wang Z, Sanchez-Olea R, Paul DL, Civan MM, Goodenough DA. Depression of intraocular pressure following inactivation of connexin43 in the nonpigmented epithelium of the ciliary body. Invest Ophthalmol Vis Sci. 2009;50(5):2185–93.

    Article  PubMed  Google Scholar 

  47. Crook RB, Takahashi K, Mead A, Dunn JJ, Sears ML. The role of NaKCl cotransport in blood-to-aqueous chloride fluxes across rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 2000;41(9):2574–83.

    CAS  PubMed  Google Scholar 

  48. Do CW, To CH. Chloride secretion by bovine ciliary epithelium: a model of aqueous humor formation. Invest Ophthalmol Vis Sci. 2000;41(7):1853–60.

    CAS  PubMed  Google Scholar 

  49. To CH, Do CW, Zamudio AC, Candia OA. Model of ionic transport for bovine ciliary epithelium: effects of acetazolamide and HCO. Am J Physiol Cell Physiol. 2001;280(6):C1521–30.

    Article  PubMed  Google Scholar 

  50. Shahidullah M, Wilson WS, Yap M, To C. Effects of ion transport and channel-blocking drugs on aqueous humor formation in isolated bovine eye. Invest Ophthalmol Vis Sci. 2003;44(3):1185–91.

    Article  PubMed  Google Scholar 

  51. Wiederholt M, Helbig H, Korbmacher C. Ion transport across the ciliary epithelium: lessons from cultured cells and proposed role of the carbonic anhydrase. In: Botre F, Gros G, Storey B, editors. Carbonic anhydrase. New York: Wiley-VCH; 1991.

    Google Scholar 

  52. McLaughlin CW, Peart D, Purves RD, Carré DA, Macknight AD, Civan MM. Effects of HCO3- on cell composition of rabbit ciliary epithelium: a new model for aqueous humor secretion. Invest Ophthalmol Vis Sci. 1998;39(9):1631–41.

    CAS  PubMed  Google Scholar 

  53. Counillon L, Touret N, Bidet M, Peterson-Yantorno K, Coca-Prados M, Stuart-Tilley A, et al. Na+/H+ and CI−/HCO3-antiporters of bovine pigmented ciliary epithelial cells. Pflugers Arch. 2000;440(5):667–78.

    Article  CAS  PubMed  Google Scholar 

  54. Edelman JL, Sachs G, Adorante JS. Ion transport asymmetry and functional coupling in bovine pigmented and nonpigmented ciliary epithelial cells. Am J Phys. 1994;266(5 Pt 1):C1210–21.

    Article  CAS  Google Scholar 

  55. Oh J, Krupin T, Tang LQ, Sveen J, Lahlum RA. Dye coupling of rabbit ciliary epithelial cells in vitro. Invest Ophthalmol Vis Sci. 1994;35(5):2509–14.

    CAS  PubMed  Google Scholar 

  56. Bowler JM, Peart D, Purves RD, Carré DA, Macknight AD, Civan MM. Electron probe X-ray microanalysis of rabbit ciliary epithelium. Exp Eye Res. 1996;62(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  57. Stelling JW, Jacob TJ. Functional coupling in bovine ciliary epithelial cells is modulated by carbachol. Am J Phys. 1997;273(6):C1876–81.

    Article  CAS  Google Scholar 

  58. Civan MM, Coca-Prados M, Peterson-Yantorno K. Regulatory volume increase of human non-pigmented ciliary epithelial cells. Exp Eye Res. 1996;62(6):627–40.

    Article  CAS  PubMed  Google Scholar 

  59. Nicholl AJ, Killey J, Leonard MN, Garner C. The role of bicarbonate in regulatory volume decrease (RVD) in the epithelial-derived human breast cancer cell line ZR-75-1. Pflugers Arch. 2002;443(5–6):875–81.

    Article  CAS  PubMed  Google Scholar 

  60. Tabcharani JA, Jensen TJ, Riordan JR, Hanrahan JW. Bicarbonate permeability of the outwardly rectifying anion channel. J Membr Biol. 1989;112(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Chen L, Jacob TJC. The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol. 2000;524(Pt 1):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca-Prados M, Barnes S, et al. Hyposmotic activation of ICl, swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol Biochim Biol Cell. 2004;82(6):708–18.

    Article  CAS  Google Scholar 

  63. Do CW, Lu W, Mitchell CH, Civan MM. Inhibition of swelling-activated Cl- currents by functional anti-ClC-3 antibody in native bovine non-pigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci. 2005;46(3):948–55.

    Article  PubMed  Google Scholar 

  64. Zhang D, Vetrivel L, Verkman AS. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J Gen Physiol. 2002;119(6):561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Do CW, Civan MM. Basis of chloride transport in ciliary epithelium. J Membr Biol. 2004;200(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  66. Mitchell CH, Carré DA, McGlinn AM, Stone RA, Civan MM. A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci U S A. 1998;95(12):7174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shahidullah M, Wilson WS. Mobilisation of intracellular calcium by P2Y2 receptors in cultured, non-transformed bovine ciliary epithelial cells. Curr Eye Res. 1997;16(10):1006–16.

    Article  CAS  PubMed  Google Scholar 

  68. Fleischhauer JC, Mitchell CH, Peterson-Yantorno K, Coca-Prados M, Civan MM. PGE(2), Ca(2+), and cAMP mediate ATP activation of Cl(−) channels in pigmented ciliary epithelial cells. Am J Physiol Cell Physiol. 2001;281(5):C1614–23.

    Article  CAS  PubMed  Google Scholar 

  69. Do C-W, Peterson-Yantorno K, Mitchell CH, Civan MM. cAMP-activated maxi-Cl(−) channels in native bovine pigmented ciliary epithelial cells. Am J Physiol Cell Physiol. 2004;287(4):C1003–11.

    Article  CAS  PubMed  Google Scholar 

  70. Cao X, Baharozian C, Hughes BA. Electrophysiological impact of thiocyanate on isolated mouse retinal pigment epithelial cells. Am J Physiol Cell Physiol. 2019;316(6):C792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Civan MM, Peterson-Yantorno K, Sánchez-Torres J, Coca-Prados M. Potential contribution of epithelial Na+ channel to net secretion of aqueous humor. J Exp Zool. 1997;279(5):498–503.

    Article  CAS  PubMed  Google Scholar 

  72. Jacob TJ, Civan MM. Role of ion channels in aqueous humor formation. Am J Phys. 1996;271(3 Pt 1):C703–20.

    Article  CAS  Google Scholar 

  73. Brubaker RF. Chapter 9 Clinical Measurements of Aqueous Dynamics: Implications for Addressing Glaucoma. In: Civan MM, editor. Current topics in membranes [Internet]. Academic; 1997 [cited 2019 Aug 9]. p. 233–84. (The eye’s aqueous humor; vol. 45). http://www.sciencedirect.com/science/article/pii/S007021610860249X

  74. Zhang JJ, Jacob TJ. Three different cl- channels in the bovine ciliary epithelium activated by hypotonic stress. J Physiol. 1997;499(Pt 2):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Do CW, Peterson-Yantorno K, Civan MM. Swelling-activated Cl- channels support Cl- secretion by bovine ciliary epithelium. Invest Ophthalmol Vis Sci. 2006;47(6):2576–82.

    Article  PubMed  Google Scholar 

  76. Schlötzer-Schrehardt U, Zenkel M, Decking U, Haubs D, Kruse FE, Jünemann A, et al. Selective upregulation of the A3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma. Invest Ophthalmol Vis Sci. 2005;46(6):2023–34.

    Article  PubMed  Google Scholar 

  77. Huang P, Lazarowski ER, Tarran R, Milgram SL, Boucher RC, Stutts MJ. Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proc Natl Acad Sci U S A. 2001;98(24):14120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petersen OH. Calcium signal compartmentalization. Biol Res. 2002;35(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  79. Tamm ER, Russell P, Piatigorsky J. Development of characterization of a immortal and differentiated murine trabecular meshwork cell line. Invest Ophthalmol Vis Sci. 1999;40(7):1392–403.

    CAS  PubMed  Google Scholar 

  80. Avila MY, Seidler RW, Stone RA, Civan MM. Inhibitors of NHE-1 Na+/H+ exchange reduce mouse intraocular pressure. Invest Ophthalmol Vis Sci. 2002;43(6):1897–902.

    PubMed  Google Scholar 

  81. Gabelt BT, Wiederholt M, Clark AF, Kaufman PL. Anterior segment physiology after bumetanide inhibition of Na-K-Cl cotransport. Invest Ophthalmol Vis Sci. 1997;38(9):1700–7.

    CAS  PubMed  Google Scholar 

  82. Avila MY, Stone RA, Civan MM. A(1)-, A(2A)- and A(3)-subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol. 2001;134(2):241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Avila MY, Stone RA, Civan MM. Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest Ophthalmol Vis Sci. 2002;43(9):3021–6.

    PubMed  Google Scholar 

  84. Kiel J, Rao R, Hollingsworth S, Reitsamer H. Ciliary blood flow and aqueous humor production. Prog Retin Eye Res. 2011;30:1–17.

    Google Scholar 

  85. Korenfeld MS, Becker B. Atrial natriuretic peptides. Effects on intraocular pressure, cGMP, and aqueous flow. Invest Ophthalmol Vis Sci. 1989;30(11):2385–92.

    CAS  PubMed  Google Scholar 

  86. Nathanson JA. Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther. 1992;260(3):956–65.

    CAS  PubMed  Google Scholar 

  87. Nathanson JA. Nitric oxide and nitrovasodilators in the eye: implications for ocular physiology and glaucoma. J Glaucoma. 1993;2(3):206–10.

    Article  CAS  PubMed  Google Scholar 

  88. Shahidullah M, Delamere NA. NO donors inhibit Na,K-ATPase activity by a protein kinase G-dependent mechanism in the nonpigmented ciliary epithelium of the porcine eye. Br J Pharmacol. 2006;148(6):871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lahav M, Melamed E, Dafna Z, Atlas D. Localization of beta receptors in the anterior segment of the rat eye by a fluorescent analogue of propranolol. Invest Ophthalmol Vis Sci. 1978;17(7):645–51.

    CAS  PubMed  Google Scholar 

  90. Nathanson JA. Adrenergic regulation of intraocular pressure: identification of beta 2-adrenergic-stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci U S A. 1980;77(12):7420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsukahara S, Maezawa N. Cytochemical localization of adenyl cyclase in the rabbit ciliary body. Exp Eye Res. 1978;26(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  92. Delamere NA, King KL. The influence of cyclic AMP upon Na,K-ATPase activity in rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 1992;33(2):430–5.

    CAS  PubMed  Google Scholar 

  93. Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch Ophthalmol Chic Ill 1960. 1978;96(11):2045–8.

    Article  CAS  Google Scholar 

  94. Mittag TW, Tormay A, Severin C, Lind G, Yoshimura N, Podos SM. Role of G-proteins in ciliary process adenylyl cyclase responses of the albino rabbit eye. Curr Eye Res. 1994;13(4):243–50.

    Article  CAS  PubMed  Google Scholar 

  95. Mittag T. Ocular effects of selective alpha-adrenergic agents: a new drug paradox? Ann Ophthalmol. 1983;15(3):201–2.

    CAS  PubMed  Google Scholar 

  96. Gharagozloo NZ, Relf SJ, Brubaker RF. Aqueous flow is reduced by the alpha-adrenergic agonist, apraclonidine hydrochloride (ALO 2145). Ophthalmology. 1988;95(9):1217–20.

    Article  CAS  PubMed  Google Scholar 

  97. Abrams DA, Robin AL, Crandall AS, Caldwell DR, Schnitzer DB, Pollack IP, et al. A limited comparison of apraclonidine’s dose response in subjects with normal or increased intraocular pressure. Am J Ophthalmol. 1989;108(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  98. Brown RH, Stewart RH, Lynch MG, Crandall AS, Mandell AI, Wilensky JT, et al. ALO 2145 reduces the intraocular pressure elevation after anterior segment laser surgery. Ophthalmology. 1988;95(3):378–84.

    Article  CAS  PubMed  Google Scholar 

  99. Robin AL, Pollack IP, House B, Enger C. Effects of ALO 2145 on intraocular pressure following argon laser trabeculoplasty. Arch Ophthalmol. 1987;105(5):646–50.

    Article  CAS  PubMed  Google Scholar 

  100. Kagemann L, Wang B, Wollstein G, Ishikawa H, Nevins JE, Nadler Z, et al. IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci. 2014;55(3):1805–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hong J, Xu J, Wei A, Wen W, Chen J, Yu X, et al. Spectral-domain optical coherence tomographic assessment of Schlemm’s canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology. 2013;120(4):709–15.

    Article  PubMed  Google Scholar 

  102. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48.

    Article  CAS  PubMed  Google Scholar 

  103. McKee H, Ye C, Yu M, Liu S, Lam DSC, Leung CKS. Anterior chamber angle imaging with swept-source optical coherence tomography: detecting the scleral spur, Schwalbe’s line, and Schlemm’s canal. J Glaucoma. 2013;22(6):468–72.

    Article  PubMed  Google Scholar 

  104. Uji A, Muraoka Y, Yoshimura N. In vivo identification of the posttrabecular aqueous outflow pathway using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(10):4162–9.

    Article  PubMed  Google Scholar 

  105. Chen Z, Sun J, Li M, Liu S, Chen L, Jing S, et al. Effect of age on the morphologies of the human Schlemm’s canal and trabecular meshwork measured with swept-source optical coherence tomography. Eye Lond Engl. 2018;32(10):1621–8.

    Google Scholar 

  106. Liu S, Yu M, Ye C, Lam DSC, CK-S L. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52(12):8598–603.

    Article  PubMed  Google Scholar 

  107. Richardson TM, Hutchinson BT, Grant WM. The outflow tract in pigmentary glaucoma: a light and electron microscopic study. Arch Ophthalmol Chic Ill 1960. 1977;95(6):1015–25.

    Article  CAS  Google Scholar 

  108. Epstein DL, Freddo TF, Anderson PJ, Patterson MM, Bassett-Chu S. Experimental obstruction to aqueous outflow by pigment particles in living monkeys. Invest Ophthalmol Vis Sci. 1986;27(3):387–95.

    CAS  PubMed  Google Scholar 

  109. Rohen JW, van der Zypen E. The phagocytic activity of the trabecular meshwork endothelium. Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 1968;175(2):143–60.

    Article  CAS  Google Scholar 

  110. Buller C, Johnson DH, Tschumper RC. Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci. 1990;31(10):2156–63.

    CAS  PubMed  Google Scholar 

  111. Raviola G. Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;22(1):45–56.

    CAS  PubMed  Google Scholar 

  112. Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS. Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci. 2012;53(3):1566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Castro A, Du Y. Trabecular meshwork regeneration – a potential treatment for glaucoma. Curr Ophthalmol Rep. 2019;7(2):80–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 2013;54(2):1450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yun H, Wang Y, Zhou Y, Wang K, Sun M, Stolz DB, et al. Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model. Commun Biol. 2018;1:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21(5):714–27.

    CAS  PubMed  Google Scholar 

  118. Grierson I, Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye Lond Engl. 1987;1(Pt 2):204–10.

    Google Scholar 

  119. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.

    Article  CAS  PubMed  Google Scholar 

  120. Toris CB. Chapter 7 Aqueous humor dynamics I: Measurement methods and animal studies. In: Civan MM, editor. Current topics in membranes [Internet]. Academic Press; 2008 [cited 2019 Aug 12]. p. 193–229. (Benos DJ, Simon SA, editors. The eye’s aqueous humor; vol. 62). http://www.sciencedirect.com/science/article/pii/S1063582308004079

  121. Freddo TF, Chaum E. Anatomy of the aqueous outflow pathway. In: Anatomy of the eye and orbit: the clinical essentials. Philadelphia: LWW; 2017.

    Google Scholar 

  122. Rohen JW, Futa R, Lütjen-Drecoll E. The fine structure of the cribriform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest Ophthalmol Vis Sci. 1981;21(4):574–85.

    CAS  PubMed  Google Scholar 

  123. Lütjen-Drecoll E, Rittig M, Rauterberg J, Jander R, Mollenhauer J. Immunomicroscopical study of type VI collagen in the trabecular meshwork of normal and glaucomatous eyes. Exp Eye Res. 1989;48(1):139–47.

    Article  PubMed  Google Scholar 

  124. Murphy CG, Yun AJ, Newsome DA, Alvarado JA. Localization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. Am J Ophthalmol. 1987;104(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  125. Marshall GE, Konstas AG, Lee WR. Immunogold localization of type IV collagen and laminin in the aging human outflow system. Exp Eye Res. 1990;51(6):691–9.

    Article  CAS  PubMed  Google Scholar 

  126. Marshall GE, Konstas AG, Lee WR. Immunogold ultrastructural localization of collagens in the aged human outflow system. Ophthalmology. 1991;98(5):692–700.

    Article  CAS  PubMed  Google Scholar 

  127. Gong H, Freddo TF, Johnson M. Age-related changes of sulfated proteoglycans in the normal human trabecular meshwork. Exp Eye Res. 1992;55(5):691–709.

    Article  CAS  PubMed  Google Scholar 

  128. Gong HY, Trinkaus-Randall V, Freddo TF. Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res. 1989;8(10):1071–82.

    Article  CAS  PubMed  Google Scholar 

  129. Gong H, Underhill CB, Freddo TF. Hyaluronan in the bovine ocular anterior segment, with emphasis on the outflow pathways. Invest Ophthalmol Vis Sci. 1994;35(13):4328–32.

    CAS  PubMed  Google Scholar 

  130. Knepper PA, Goossens W, Palmberg PF. Glycosaminoglycan stratification of the juxtacanalicular tissue in normal and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37(12):2414–25.

    CAS  PubMed  Google Scholar 

  131. Knepper PA, Goossens W, Hvizd M, Palmberg PF. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37(7):1360–7.

    CAS  PubMed  Google Scholar 

  132. Keller KE, Bradley JM, Vranka JA, Acott TS. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci. 2011;52(8):5049–57.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chatterjee A, Villarreal G, Rhee DJ. Matricellular proteins in the trabecular meshwork: review and update. J Ocul Pharmacol Ther. 2014;30(6):447–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alexander JP, Samples JR, Van Buskirk EM, Acott TS. Expression of matrix metalloproteinases and inhibitor by human trabecular meshwork. Invest Ophthalmol Vis Sci. 1991;32(1):172–80.

    CAS  PubMed  Google Scholar 

  135. Bradley JM, Vranka J, Colvis CM, Conger DM, Alexander JP, Fisk AS, et al. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci. 1998;39(13):2649–58.

    CAS  PubMed  Google Scholar 

  136. Keller KE, Bradley JM, Acott TS. Differential effects of ADAMTS-1, −4, and −5 in the trabecular meshwork. Invest Ophthalmol Vis Sci. 2009;50(12):5769–77.

    Article  PubMed  Google Scholar 

  137. Lütjen-Drecoll E, Futa R, Rohen JW. Ultrahistochemical studies on tangential sections of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 1981;21(4):563–73.

    PubMed  Google Scholar 

  138. Grierson I, Lee WR, Abraham S, Howes RC. Associations between the cells of the walls of Schlemm’s canal. Albrecht Von Graefes Arch Klin Exp Ophthalmol Albrecht Von Graefes Arch Clin Exp Ophthalmol. 1978;208(1–3):33–47.

    Article  CAS  Google Scholar 

  139. Gong H, Tripathi RC, Tripathi BJ. Morphology of the aqueous outflow pathway. Microsc Res Tech. 1996;33(4):336–67.

    Article  CAS  PubMed  Google Scholar 

  140. Lai J, Su Y, Swain DL, Huang D, Getchevski D, Gong H. The role of Schlemm’s canal endothelium cellular connectivity in Giant vacuole formation: a 3D electron microscopy study. Invest Ophthalmol Vis Sci. 2019;60(5):1630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grierson I, Lee WR. Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm’s canal. Am J Ophthalmol. 1975;80(5):863–84.

    Article  CAS  PubMed  Google Scholar 

  142. Brilakis HS, Johnson DH. Giant vacuole survival time and implications for aqueous humor outflow. J Glaucoma. 2001;10(4):277–83.

    Article  CAS  PubMed  Google Scholar 

  143. Grierson I, Lee WR. Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res. 1974;19(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  144. Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ethier CR, Coloma FM, Sit AJ, Johnson M. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39(11):2041–8.

    CAS  PubMed  Google Scholar 

  146. Le TD, Swain DL, Lai J, Lam C, Gong H. Changes in pore densities of the inner wall endothelium of Schlemm’s canal with increasing pressures using 3D serial block-face scanning electron microscopy. Invest Ophthalmol Vis Sci. 2019;60(9):3182.

    Google Scholar 

  147. Bhatt K, Gong H, Freddo TF. Freeze-fracture studies of interendothelial junctions in the angle of the human eye. Invest Ophthalmol Vis Sci. 1995;36(7):1379–89.

    CAS  PubMed  Google Scholar 

  148. Ye W, Gong H, Sit A, Johnson M, Freddo TF. Interendothelial junctions in normal human Schlemm’s canal respond to changes in pressure. Invest Ophthalmol Vis Sci. 1997;38(12):2460–8.

    CAS  PubMed  Google Scholar 

  149. Yang C-YC, Huynh T, Johnson M, Gong H. Endothelial glycocalyx layer in the aqueous outflow pathway of bovine and human eyes. Exp Eye Res. 2014;128:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hann CR, Bentley MD, Vercnocke A, Ritman EL, Fautsch MP. Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res. 2011;92(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  151. de Kater AW, Spurr-Michaud SJ, Gipson IK. Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthalmol Vis Sci. 1990;31(2):347–53.

    PubMed  Google Scholar 

  152. Battista SA, Lu Z, Hofmann S, Freddo T, Overby DR, Gong H. Reduction of the available area for aqueous humor outflow and increase in meshwork Herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci. 2008;49(12):5346–52.

    Article  PubMed  Google Scholar 

  153. Gong H, Francis A. Schlemm’s canal and collector channels as therapeutic targets. In: Samples JR, Ahmed IIK, editors. Surgical innovations in glaucoma [Internet]. New York: Springer New York; 2014. [cited 2019 Aug 26]. p. 3–25. https://doi.org/10.1007/978-1-4614-8348-9_1.

    Google Scholar 

  154. Hann CR, Vercnocke AJ, Bentley MD, Jorgensen SM, Fautsch MP. Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Invest Ophthalmol Vis Sci. 2014;55(9):5834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhu J, Ye W, Wang T, Gong H. Reversible changes in aqueous outflow facility, hydrodynamics, and morphology following acute intraocular pressure variation in bovine eyes. Chin Med J. 2013;126(8):1451–7.

    PubMed  Google Scholar 

  156. Xin C, Johnstone M, Wang N, Wang RK. OCT study of mechanical properties associated with trabecular meshwork and Collector Channel motion in human eyes. PLoS One. 2016;11(9):e0162048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ascher KW. [Veins of the aqueous humor in glaucoma]. Boll Ocul 1954;33(3):129–44.

    Google Scholar 

  158. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins. Br J Ophthalmol. 1951;35(5):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Toris CB, Yablonski ME, Wang YL, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 1999;127(4):407–12.

    Article  CAS  PubMed  Google Scholar 

  160. Sultan M, Blondeau P. Episcleral venous pressure in younger and older subjects in the sitting and supine positions. J Glaucoma. 2003;12(4):370–3.

    Article  PubMed  Google Scholar 

  161. Greenfield DS. Glaucoma associated with elevated episcleral venous pressure. J Glaucoma. 2000;9(2):190–4.

    Article  CAS  PubMed  Google Scholar 

  162. Sit AJ, McLaren JW. Measurement of episcleral venous pressure. Exp Eye Res. 2011;93(3):291–8.

    Article  CAS  PubMed  Google Scholar 

  163. Toris CB, Tafoya ME, Camras CB, Yablonski ME. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology. 1995;102(3):456–1.

    Article  CAS  PubMed  Google Scholar 

  164. Abreu MM, Kim YY, Shin DH, Netland PA. Topical verapamil and episcleral venous pressure. Ophthalmology. 1998;105(12):2251–5.

    Article  CAS  PubMed  Google Scholar 

  165. Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015;31(3):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H. Netarsudil increases outflow facility in human eyes through multiple mechanisms. Invest Ophthalmol Vis Sci. 2016;57(14):6197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hann CR, Fautsch MP. Preferential fluid flow in the human trabecular meshwork near collector channels. Invest Ophthalmol Vis Sci. 2009;50(4):1692–7.

    Article  PubMed  Google Scholar 

  168. Lu Z, Overby DR, Scott PA, Freddo TF, Gong H. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res. 2008;86(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  169. Lu Z, Zhang Y, Freddo TF, Gong H. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes. Exp Eye Res. 2011;93(4):397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Swaminathan SS, Oh D-J, Kang MH, Ren R, Jin R, Gong H, et al. Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Invest Ophthalmol Vis Sci. 2013;54(3):2035–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang C-YC, Liu Y, Lu Z, Ren R, Gong H. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes. Invest Ophthalmol Vis Sci. 2013;54(8):5859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cha EDK, Xu J, Gong L, Gong H. Variations in active outflow along the trabecular outflow pathway. Exp Eye Res. 2016;146:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ren R, Swain D, Lai J, Gong H. Reduced effective filtration area in the trabecular meshwork of steroid-induced ocular hypertensive mouse eyes. Invest Ophthalmol Vis Sci. 2018;59(9):3476.

    Google Scholar 

  174. Zhang Y, Toris CB, Liu Y, Ye W, Gong H. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma. Exp Eye Res. 2009;89(5):748–56.

    Article  CAS  PubMed  Google Scholar 

  175. Gong L, Cha EDK, Gong H. Hydrodynamic and morphological changes along the trabecular outflow pathway in POAG eyes. Invest Ophthalmol Vis Sci. 2016;57(12):5141.

    Google Scholar 

  176. Huang AS, Penteado RC, Saha SK, Do JL, Ngai P, Hu Z, et al. Fluorescein aqueous angiography in live normal human eyes. J Glaucoma. 2018;27(11):957–64.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Huang AS, Mohindroo C, Weinreb RN. Aqueous humor outflow structure and function imaging at the bench and bedside: a review. J Clin Exp Ophthalmol. 2016;7(4):578.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Huang AS, Saraswathy S, Dastiridou A, Begian A, Mohindroo C, Tan JCH, et al. Aqueous angiography-mediated guidance of trabecular bypass improves angiographic outflow in human enucleated eyes. Invest Ophthalmol Vis Sci. 2016;57(11):4558–65.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Saraswathy S, Tan JCH, Yu F, Francis BA, Hinton DR, Weinreb RN, et al. Aqueous angiography: real-time and physiologic aqueous humor outflow imaging. PLoS One. 2016;11(1):e0147176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huang AS, Saraswathy S, Dastiridou A, Begian A, Legaspi H, Mohindroo C, et al. Aqueous angiography with fluorescein and indocyanine green in bovine eyes. Transl Vis Sci Technol. 2016;5(6):5.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Huang AS, Li M, Yang D, Wang H, Wang N, Weinreb RN. Aqueous angiography in living nonhuman primates shows segmental, pulsatile, and dynamic angiographic aqueous humor outflow. Ophthalmology. 2017;124(6):793–803.

    Article  PubMed  Google Scholar 

  182. Akagi T, Uji A, Huang AS, Weinreb RN, Yamada T, Miyata M, et al. Conjunctival and intrascleral vasculatures assessed using anterior segment optical coherence tomography angiography in normal eyes. Am J Ophthalmol. 2018;196:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nilsson SF. The uveoscleral outflow routes. Eye Lond Engl. 1997;11(Pt 2):149–54.

    Google Scholar 

  184. Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  185. Grierson I, Lee WR, Abraham S. Effects of pilocarpine on the morphology of the human outflow apparatus. Br J Ophthalmol. 1978;62(5):302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Swain DL, Ho J, Lai J, Gong H. Shorter scleral spur in eyes with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2015;56(3):1638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci. 1982;22(5):625–32.

    PubMed  Google Scholar 

  188. Johnstone MA, Grant WG. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973;75(3):365–83.

    Article  CAS  PubMed  Google Scholar 

  189. Brubaker RF. The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Investig Ophthalmol. 1975;14(4):286–92.

    CAS  Google Scholar 

  190. Hashimoto JM, Epstein DL. Influence of intraocular pressure on aqueous outflow facility in enucleated eyes of different mammals. Invest Ophthalmol Vis Sci. 1980;19(12):1483–9.

    CAS  PubMed  Google Scholar 

  191. Moses RA, Grodzki WJ, Etheridge EL, Wilson CD. Schlemm’s canal: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 1981;20(1):61–8.

    CAS  PubMed  Google Scholar 

  192. Li G, Farsiu S, Chiu SJ, Gonzalez P, Lütjen-Drecoll E, Overby DR, et al. Pilocarpine-induced dilation of Schlemm’s canal and prevention of lumen collapse at elevated intraocular pressures in living mice visualized by OCT. Invest Ophthalmol Vis Sci. 2014;55(6):3737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Skaat A, Rosman MS, Chien JL, Mogil RS, Ren R, Liebmann JM, et al. Effect of pilocarpine hydrochloride on the Schlemm Canal in healthy eyes and eyes with open-angle Glaucoma. JAMA Ophthalmol. 2016;134(9):976–81.

    Article  PubMed  Google Scholar 

  194. Crawford K, Kaufman PL. Pilocarpine antagonizes prostaglandin F2 alpha-induced ocular hypotension in monkeys. Evidence for enhancement of Uveoscleral outflow by prostaglandin F2 alpha. Arch Ophthalmol Chic Ill 1960. 1987;105(8):1112–6.

    Article  CAS  Google Scholar 

  195. Alm A, Nilsson SFE. Uveoscleral outflow – a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  PubMed  Google Scholar 

  196. Croft MA, Lütjen-Drecoll E, Kaufman PL. Age-related posterior ciliary muscle restriction – a link between trabecular meshwork and optic nerve head pathophysiology. Exp Eye Res. 2017;158:187–9.

    Article  CAS  PubMed  Google Scholar 

  197. Lütjen-Drecoll E, Tamm E. Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2 alpha. Exp Eye Res. 1988;47(5):761–9.

    Article  PubMed  Google Scholar 

  198. Gong H, Ruberti J, Overby D, Johnson M, Freddo TF. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp Eye Res. 2002;75(3):347–58.

    Article  CAS  PubMed  Google Scholar 

  199. Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm – an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol. 1972;50(3):295–320.

    Article  CAS  Google Scholar 

  200. Moseley H, Grierson I, Lee WR. Mathematical modelling of aqueous humour outflow from the eye through the pores in the lining endothelium of Schlemm’s canal. Clin Phys Physiol Meas Off J Hosp Phys Assoc Dtsch Ges Med Phys Eur Fed Organ Med Phys. 1983;4(1):47–63.

    CAS  Google Scholar 

  201. Mäepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54(6):879–83.

    Article  PubMed  Google Scholar 

  202. Johnson M, Shapiro A, Ethier CR, Kamm RD. Modulation of outflow resistance by the pores of the inner wall endothelium. Invest Ophthalmol Vis Sci. 1992;33(5):1670–5.

    CAS  PubMed  Google Scholar 

  203. Lai J, Su Y, Huang D, Gong H. The role of cellular connections in Schlemm’s canal endothelial cells in regulating segmental aqueous outflow. Invest Ophthalmol Vis Sci. 2017;58(8):1077.

    Google Scholar 

  204. Erickson-Lamy K, Rohen JW, Grant WM. Outflow facility studies in the perfused bovine aqueous outflow pathways. Curr Eye Res. 1988;7(8):799–807.

    Article  CAS  PubMed  Google Scholar 

  205. Erickson-Lamy K, Schroeder AM, Bassett-Chu S, Epstein DL. Absence of time-dependent facility increase (“washout”) in the perfused enucleated human eye. Invest Ophthalmol Vis Sci. 1990;31(11):2384–8.

    CAS  PubMed  Google Scholar 

  206. Johnson M, Chen A, Epstein DL, Kamm RD. The pressure and volume dependence of the rate of wash-out in the bovine eye. Curr Eye Res. 1991;10(4):373–5.

    Article  CAS  PubMed  Google Scholar 

  207. Gong H, Freddo TF. The washout phenomenon in aqueous outflow – why does it matter? Exp Eye Res. 2009;88(4):729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Overby D, Gong H, Qiu G, Freddo TF, Johnson M. The mechanism of increasing outflow facility during washout in the bovine eye. Invest Ophthalmol Vis Sci. 2002;43(11):3455–64.

    PubMed  Google Scholar 

  209. Sabanay I, Gabelt BT, Tian B, Kaufman PL, Geiger B. H-7 effects on the structure and fluid conductance of monkey trabecular meshwork. Arch Ophthalmol Chic Ill 1960. 2000;118(7):955–62.

    CAS  Google Scholar 

  210. Sabanay I, Tian B, Gabelt BT, Geiger B, Kaufman PL. Functional and structural reversibility of H-7 effects on the conventional aqueous outflow pathway in monkeys. Exp Eye Res. 2004;78(1):137–50.

    Article  CAS  PubMed  Google Scholar 

  211. Tamm E, Flügel C, Stefani FH, Rohen JW. Contractile cells in the human scleral spur. Exp Eye Res. 1992;54(4):531–43.

    Article  CAS  PubMed  Google Scholar 

  212. Tamm ER, Koch TA, Mayer B, Stefani FH, Lütjen-Drecoll E. Innervation of myofibroblast-like scleral spur cells in human monkey eyes. Invest Ophthalmol Vis Sci. 1995;36(8):1633–44.

    CAS  PubMed  Google Scholar 

  213. Tamm ER, Flügel C, Stefani FH, Lütjen-Drecoll E. Nerve endings with structural characteristics of mechanoreceptors in the human scleral spur. Invest Ophthalmol Vis Sci. 1994;35(3):1157–66.

    CAS  PubMed  Google Scholar 

  214. Stamer WD, Braakman ST, Zhou EH, Ethier CR, Fredberg JJ, Overby DR, et al. Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res. 2015;44:86–98.

    Article  PubMed  Google Scholar 

  215. Clark AF. The cell and molecular biology of glaucoma: biomechanical factors in glaucoma. Invest Ophthalmol Vis Sci. 2012;53(5):2473–5.

    Article  CAS  PubMed  Google Scholar 

  216. Wang J, Harris A, Prendes MA, Alshawa L, Gross JC, Wentz SM, et al. Targeting transforming growth factor-β signaling in primary open-angle glaucoma. J Glaucoma. 2017;26(4):390–5.

    Article  CAS  PubMed  Google Scholar 

  217. Gauthier AC, Liu J. Epigenetics and signaling pathways in glaucoma. Biomed Res Int. 2017;2017:5712341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ashpole NE, Overby DR, Ethier CR, Stamer WD. Shear stress-triggered nitric oxide release from Schlemm’s canal cells. Invest Ophthalmol Vis Sci. 2014;55(12):8067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Stamer WD, Lei Y, Boussommier-Calleja A, Overby DR, Ethier CR. eNOS, a pressure-dependent regulator of intraocular pressure. Invest Ophthalmol Vis Sci. 2011;52(13):9438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, et al. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol. 2018;150(12):1660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol Chic Ill 1960. 1963;69:783–801.

    Article  CAS  Google Scholar 

  223. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8(12):1233–40.

    Article  CAS  PubMed  Google Scholar 

  224. Schuman JS, Chang W, Wang N, de Kater AW, Allingham RR. Excimer laser effects on outflow facility and outflow pathway morphology. Invest Ophthalmol Vis Sci. 1999;40(8):1676–80.

    CAS  PubMed  Google Scholar 

  225. Gong H, Freddo TF, Zhang Y. New morphological findings in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2007;48(13):2079.

    Google Scholar 

  226. Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994;59(6):723–7.

    Article  CAS  PubMed  Google Scholar 

  227. Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol. 2002;46(3):249–53.

    Article  CAS  PubMed  Google Scholar 

  228. Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N, Honda Y. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2001;239(2):109–13.

    Article  CAS  Google Scholar 

  229. Grieshaber MC, Pienaar A, Olivier J, Stegmann R. Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. Invest Ophthalmol Vis Sci. 2010;51(3):1498–504.

    Article  PubMed  Google Scholar 

  230. Gong H, Tripathi RC, Tripathi BJ. Morphology of the aqueous outflow pathway. Microsc Res Tech. 1996;33:336–67.

    Google Scholar 

Download references

Acknowledgments

The original work of TFF reported in this chapter was supported by NEI EY-04567 and NEI EY-13825 and by National Glaucoma Research, a program of the BrightFocus Foundation.

The original work of MC reported in this chapter was supported in part by NEI EY-08343 and EY-13624.

The original work of HG reported in this chapter was supported in part by NEI, EY-09699, EY022634, the Massachusetts Lions Eye Research Fund, and National Glaucoma Research, a program of the BrightFocus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Gong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freddo, T.F., Civan, M., Gong, H. (2022). Aqueous Humor and the Dynamics of Its Flow: Mechanisms and Routes of Aqueous Humor Drainage. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_163

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_163

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics