Skip to main content

Aqueous Humor Dynamics and Its Influence on Glaucoma

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The chapter describes the anatomical and functional features of the aqueous humor (AH) dynamics with special focus on pathological changes in glaucoma. The main therapeutic approaches to medically and surgically regulate AH production and outflow are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotecha A, Lim S, Garway-Heath D (2009) Tonometry and Intraocular Pressure Fluctuation. In: Shaarawy TM, Sherwood MB, Hitchings RG, Crowston JG (eds) Glaucoma, Medical Diagnosis & Therapy. Saunders Elsevier Limited, Amsterdam, Niederlande, pp. 103-113.

    Google Scholar 

  2. Toris CB (2010) Pharmacotherapies for glaucoma. Curr Mol Med 10: 824-840

    Google Scholar 

  3. Goel M, Picciani RG, Lee RK, Bhattacharya SK (2010) Aqueous humor dynamics: a review. Open Ophthalmol J 4: 52-59 DOI https://doi.org/10.2174/1874364101004010052

    Article  Google Scholar 

  4. Mark HH (2010) Aqueous humor dynamics in historical perspective. Surv Ophthalmol 55: 89-100 DOI https://doi.org/10.1016/j.survophthal.2009.06.005

    Article  Google Scholar 

  5. Stamper RL, Lieberman MF, Drake MV (2009) Aqueous Humor Dynamics. In: Stamper RL, Lieberman MF, Drake MV (eds) Becker-Shaffer's Diagnosis and Therapy of the Glaucomas. MOSBY Elsevier, Maryland Heights, MO, pp. 8-67.

    Google Scholar 

  6. Wang W, Qian X, Song H, Zhang M, Liu Z (2016) Fluid and structure coupling analysis of the interaction between aqueous humor and iris. Biomed Eng Online 15: 133 DOI https://doi.org/10.1186/s12938-016-0261-3

  7. Toris CB, Gregerson DS, Pederson JE (1987) Uveoscleral outflow using different-sized fluorescent tracers in normal and inflamed eyes. Exp Eye Res 45: 525-532

    Article  Google Scholar 

  8. Toris CB, Pederson JE (1987) Aqueous humor dynamics in experimental iridocyclitis. Invest Ophthalmol Vis Sci 28: 477-481

    Google Scholar 

  9. Keller KE, Bradley JM, Sun YY, Yang YF, Acott TS (2017) Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 58: 5298-5307 DOI https://doi.org/10.1167/iovs.17-22732

    Article  Google Scholar 

  10. Osmond M, Bernier SM, Pantcheva MB, Krebs MD (2017) Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol Bioeng 114: 915-923 DOI https://doi.org/10.1002/bit.26206

    Article  Google Scholar 

  11. Huang W, Fan Q, Wang W, Zhou M, Laties AM, Zhang X (2013) Collagen: a potential factor involved in the pathogenesis of glaucoma. Med Sci Monit Basic Res 19: 237-240 DOI 10.12659/MSMBR.889061

    Article  Google Scholar 

  12. Xu L, Zhang Y, Guo R, Shen W, Qi Y, Wang Q, Guo Z, Qi C, Yin H, Wang J (2017) HES1 promotes extracellular matrix protein expression and inhibits proliferation and migration in human trabecular meshwork cells under oxidative stress. Oncotarget 8: 21818-21833 DOI 10.18632/oncotarget.15631

    Google Scholar 

  13. Zhao J, Wang S, Zhong W, Yang B, Sun L, Zheng Y (2016) Oxidative stress in the trabecular meshwork (Review). Int J Mol Med 38: 995-1002 DOI https://doi.org/10.3892/ijmm.2016.2714

    Article  Google Scholar 

  14. Babizhayev MA, Yegorov YE (2011) Senescent phenotype of trabecular meshwork cells displays biomarkers in primary open-angle glaucoma. Curr Mol Med 11: 528-552

    Article  Google Scholar 

  15. Izzotti A, Longobardi M, Cartiglia C, Sacca SC (2011) Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS One 6: e14567 DOI https://doi.org/10.1371/journal.pone.0014567

    Article  Google Scholar 

  16. Sacca SC, Izzotti A (2014) Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 71: 2197-2218 DOI https://doi.org/10.1007/s00018-013-1493-z

    Article  Google Scholar 

  17. Reina-Torres E, Wen JC, Liu KC, Li G, Sherwood JM, Chang JY, Challa P, Flugel-Koch CM, Stamer WD, Allingham RR, Overby DR (2017) VEGF as a Paracrine Regulator of Conventional Outflow Facility. Invest Ophthalmol Vis Sci 58: 1899-1908 DOI https://doi.org/10.1167/iovs.16-20779

    Article  Google Scholar 

  18. Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF (2017) Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res 159: 16-22 DOI https://doi.org/10.1016/j.exer.2017.02.010

    Article  Google Scholar 

  19. Fuchshofer R, Tamm ER (2012) The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347: 279-290 DOI https://doi.org/10.1007/s00441-011-1274-7

    Article  Google Scholar 

  20. Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bosl M, Bosserhoff A, Kostler J, Wagner R, Tamm ER, Fuchshofer R (2012) Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol 180: 2386-2403 DOI https://doi.org/10.1016/j.ajpath.2012.02.030

    Article  Google Scholar 

  21. Muralidharan AR, Maddala R, Skiba NP, Rao PV (2016) Growth Differentiation Factor-15-Induced Contractile Activity and Extracellular Matrix Production in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 57: 6482-6495 DOI https://doi.org/10.1167/iovs.16-20671

    Article  Google Scholar 

  22. Su Y, Yang CY, Li Z, Xu F, Zhang L, Wang F, Zhao S (2012) Smad7 siRNA inhibit expression of extracellular matrix in trabecular meshwork cells treated with TGF-beta2. Mol Vis 18: 1881-1884

    Google Scholar 

  23. Wang J, Harris A, Prendes MA, Alshawa L, Gross JC, Wentz SM, Rao AB, Kim NJ, Synder A, Siesky B (2017) Targeting Transforming Growth Factor-beta Signaling in Primary Open-Angle Glaucoma. J Glaucoma 26: 390-395 DOI https://doi.org/10.1097/IJG.0000000000000627

    Article  Google Scholar 

  24. Wordinger RJ, Clark AF (2014) Lysyl oxidases in the trabecular meshwork. J Glaucoma 23: S55-58 DOI https://doi.org/10.1097/IJG.0000000000000127

    Article  Google Scholar 

  25. Banerjee J, Leung CT, Li A, Peterson-Yantorno K, Ouyang H, Stamer WD, Civan MM (2017) Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 58: 492-501 DOI https://doi.org/10.1167/iovs.16-20188

    Article  Google Scholar 

  26. Ashworth Briggs EL, Toh T, Eri R, Hewitt AW, Cook AL (2015) TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol Vis 21: 1162-1172

    Google Scholar 

  27. Dismuke WM, Liang J, Overby DR, Stamer WD (2014) Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res 120: 28-35 DOI https://doi.org/10.1016/j.exer.2013.12.012

    Article  Google Scholar 

  28. Ellis DZ, Sharif NA, Dismuke WM (2010) Endogenous regulation of human Schlemm's canal cell volume by nitric oxide signaling. Invest Ophthalmol Vis Sci 51: 5817-5824 DOI https://doi.org/10.1167/iovs.09-5072

    Article  Google Scholar 

  29. Stamer WD, Braakman ST, Zhou EH, Ethier CR, Fredberg JJ, Overby DR, Johnson M (2015) Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction. Prog Retin Eye Res 44: 86-98 DOI https://doi.org/10.1016/j.preteyeres.2014.08.002

    Article  Google Scholar 

  30. Braakman ST, Read AT, Chan DW, Ethier CR, Overby DR (2015) Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal. Exp Eye Res 130: 87-96 DOI https://doi.org/10.1016/j.exer.2014.11.008

    Article  Google Scholar 

  31. Braakman ST, Pedrigi RM, Read AT, Smith JA, Stamer WD, Ethier CR, Overby DR (2014) Biomechanical strain as a trigger for pore formation in Schlemm's canal endothelial cells. Exp Eye Res 127: 224-235 DOI https://doi.org/10.1016/j.exer.2014.08.003

    Article  Google Scholar 

  32. Braakman ST, Moore JE, Jr., Ethier CR, Overby DR (2016) Transport across Schlemm's canal endothelium and the blood-aqueous barrier. Exp Eye Res 146: 17-21 DOI https://doi.org/10.1016/j.exer.2015.11.026

    Article  Google Scholar 

  33. Cai J, Perkumas KM, Qin X, Hauser MA, Stamer WD, Liu Y (2015) Expression Profiling of Human Schlemm's Canal Endothelial Cells From Eyes With and Without Glaucoma. Invest Ophthalmol Vis Sci 56: 6747-6753 DOI https://doi.org/10.1167/iovs.15-17720

    Article  Google Scholar 

  34. Nau CB, Malihi M, McLaren JW, Hodge DO, Sit AJ (2013) Circadian variation of aqueous humor dynamics in older healthy adults. Invest Ophthalmol Vis Sci 54: 7623-7629 DOI https://doi.org/10.1167/iovs.12-12690

    Article  Google Scholar 

  35. Liu H, Fan S, Gulati V, Camras LJ, Zhan G, Ghate D, Camras CB, Toris CB (2011) Aqueous humor dynamics during the day and night in healthy mature volunteers. Arch Ophthalmol 129: 269-275 DOI https://doi.org/10.1001/archophthalmol.2011.4

    Article  Google Scholar 

  36. Selvadurai D, Hodge D, Sit AJ (2010) Aqueous humor outflow facility by tonography does not change with body position. Invest Ophthalmol Vis Sci 51: 1453-1457 DOI https://doi.org/10.1167/iovs.09-4058

    Article  Google Scholar 

  37. Sihota R, Lakshmaiah NC, Walia KB, Sharma S, Pailoor J, Agarwal HC (2001) The trabecular meshwork in acute and chronic angle closure glaucoma. Indian J Ophthalmol 49: 255-259

    Google Scholar 

  38. Read AT, Chan DW, Ethier CR (2007) Actin structure in the outflow tract of normal and glaucomatous eyes. Exp Eye Res 84: 214-226

    Article  Google Scholar 

  39. Maepea O, Bill A (1989) The pressures in the episcleral veins, Schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Exp Eye Res 49: 645-663

    Article  Google Scholar 

  40. Pescosolido N, Cavallotti C, Rusciano D, Nebbioso M (2012) Trabecular meshwork in normal and pathological eyes. Ultrastruct Pathol 36: 102-107 DOI https://doi.org/10.3109/01913123.2011.634090

    Article  Google Scholar 

  41. Pulliero A, Seydel A, Camoirano A, Sacca SC, Sandri M, Izzotti A (2014) Oxidative damage and autophagy in the human trabecular meshwork as related with ageing. PLoS One 9: e98106 DOI https://doi.org/10.1371/journal.pone.0098106

    Article  Google Scholar 

  42. Kersey JP, Broadway DC (2006) Corticosteroid-induced glaucoma: a review of the literature. Eye (Lond) 20: 407-416 DOI https://doi.org/10.1038/sj.eye.6701895

    Article  Google Scholar 

  43. Raghunathan VK, Morgan JT, Park SA, Weber D, Phinney BS, Murphy CJ, Russell P (2015) Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix. Invest Ophthalmol Vis Sci 56: 4447-4459 DOI https://doi.org/10.1167/iovs.15-16739

    Article  Google Scholar 

  44. McDougal DH, Gamlin PD (2015) Autonomic control of the eye. Compr Physiol 5: 439-473 DOI https://doi.org/10.1002/cphy.c140014

  45. Donegan RK, Lieberman RL (2016) Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 59: 788-809 DOI https://doi.org/10.1021/acs.jmedchem.5b00828

    Article  Google Scholar 

  46. Wikipedia tfe Alfred Carl Graefe.

    Google Scholar 

  47. Pfeiffer N (1997) Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol 42: 137-151

    Article  MathSciNet  Google Scholar 

  48. Winkler NS, Fautsch MP (2014) Effects of prostaglandin analogues on aqueous humor outflow pathways. J Ocul Pharmacol Ther 30: 102-109 DOI https://doi.org/10.1089/jop.2013.0179

    Article  Google Scholar 

  49. Sagara T, Gaton DD, Lindsey JD, Gabelt BT, Kaufman PL, Weinreb RN (1999) Reduction of collagen type I in the ciliary muscle of inflamed monkey eyes. Invest Ophthalmol Vis Sci 40: 2568-2576

    Google Scholar 

  50. Stamer WD, Piwnica D, Jolas T, Carling RW, Cornell CL, Fliri H, Martos J, Pettit SN, Wang JW, Woodward DF (2010) Cellular basis for bimatoprost effects on human conventional outflow. Invest Ophthalmol Vis Sci 51: 5176-5181 DOI https://doi.org/10.1167/iovs.09-4955

    Article  Google Scholar 

  51. Inoue K (2014) Managing adverse effects of glaucoma medications. Clin Ophthalmol 8: 903-913 DOI https://doi.org/10.2147/OPTH.S44708

  52. Toris CB, Gabelt BT, Kaufman PL (2008) Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv Ophthalmol 53 Suppl1: S107-120 DOI https://doi.org/10.1016/j.survophthal.2008.08.010

    Article  Google Scholar 

  53. Wang YL, Hayashi M, Yablonski ME, Toris CB (2002) Effects of multiple dosing of epinephrine on aqueous humor dynamics in human eyes. J Ocul Pharmacol Ther 18: 53-63 DOI https://doi.org/10.1089/108076802317233216

    Article  Google Scholar 

  54. Giovannitti JA, Jr., Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62: 31-39 DOI https://doi.org/10.2344/0003-3006-62.1.31

    Article  Google Scholar 

  55. Cantor LB (2000) The evolving pharmacotherapeutic profile of brimonidine, an alpha 2-adrenergic agonist, after four years of continuous use. Expert Opin Pharmacother 1: 815-834 DOI https://doi.org/10.1517/14656566.1.4.815

    Article  Google Scholar 

  56. Wheeler LA, Lai R, Woldemussie E (1999) From the lab to the clinic: activation of an alpha-2 agonist pathway is neuroprotective in models of retinal and optic nerve injury. Eur J Ophthalmol 9 Suppl 1: S17-21

    Article  Google Scholar 

  57. Rao PV, Pattabiraman PP, Kopczynski C (2017) Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res 158: 23-32 DOI https://doi.org/10.1016/j.exer.2016.08.023

    Article  Google Scholar 

  58. Aliancy J, Stamer WD, Wirostko B (2017) A Review of Nitric Oxide for the Treatment of Glaucomatous Disease. Ophthalmol Ther 6: 221-232 DOI https://doi.org/10.1007/s40123-017-0094-6

    Article  Google Scholar 

  59. Garcia GA, Ngai P, Mosaed S, Lin KY (2016) Critical evaluation of latanoprostene bunod in the treatment of glaucoma. Clin Ophthalmol 10: 2035-2050 DOI https://doi.org/10.2147/OPTH.S103985

    Article  Google Scholar 

  60. Myers JS, Sall KN, DuBiner H, Slomowitz N, McVicar W, Rich CC, Baumgartner RA (2016) A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of 2 and 4 Weeks of Twice-Daily Ocular Trabodenoson in Adults with Ocular Hypertension or Primary Open-Angle Glaucoma. J Ocul Pharmacol Ther 32: 555-562 DOI https://doi.org/10.1089/jop.2015.0148

    Article  Google Scholar 

  61. Ge P, Navarro ID, Kessler MM, Bernier SG, Perl NR, Sarno R, Masferrer J, Hannig G, Stamer WD (2016) The Soluble Guanylate Cyclase Stimulator IWP-953 Increases Conventional Outflow Facility in Mouse Eyes. Invest Ophthalmol Vis Sci 57: 1317-1326 DOI https://doi.org/10.1167/iovs.15-18958

    Article  Google Scholar 

  62. Roy Chowdhury U, Viker KB, Stoltz KL, Holman BH, Fautsch MP, Dosa PI (2016) Analogs of the ATP-Sensitive Potassium (KATP) Channel Opener Cromakalim with in Vivo Ocular Hypotensive Activity. J Med Chem 59: 6221-6231 DOI https://doi.org/10.1021/acs.jmedchem.6b00406

    Article  Google Scholar 

  63. Roy Chowdhury U, Rinkoski TA, Bahler CK, Millar JC, Bertrand JA, Holman BH, Sherwood JM, Overby DR, Stoltz KL, Dosa PI, Fautsch MP (2017) Effect of Cromakalim Prodrug 1 (CKLP1) on Aqueous Humor Dynamics and Feasibility of Combination Therapy With Existing Ocular Hypotensive Agents. Invest Ophthalmol Vis Sci 58: 5731-5742 DOI https://doi.org/10.1167/iovs.17-22538

    Article  Google Scholar 

  64. Kim J, Park DY, Bae H, Park DY, Kim D, Lee CK, Song S, Chung TY, Lim DH, Kubota Y, Hong YK, He Y, Augustin HG, Oliver G, Koh GY (2017) Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest 127: 3877-3896 DOI https://doi.org/10.1172/JCI94668

    Article  Google Scholar 

  65. Sumida GM, Stamer WD (2011) S1P(2) receptor regulation of sphingosine-1-phosphate effects on conventional outflow physiology. Am J Physiol Cell Physiol 300: C1164-1171 DOI https://doi.org/10.1152/ajpcell.00437.2010

    Article  Google Scholar 

  66. Ramer R, Hinz B (2010) Cyclooxygenase-2 and tissue inhibitor of matrix metalloproteinases-1 confer the antimigratory effect of cannabinoids on human trabecular meshwork cells. Biochem Pharmacol 80: 846-857 DOI https://doi.org/10.1016/j.bcp.2010.05.010

    Article  Google Scholar 

  67. Gabelt BT, Okka M, Dean TR, Kaufman PL (2005) Aqueous humor dynamics in monkeys after topical R-DOI. Invest Ophthalmol Vis Sci 46: 4691-4696 DOI https://doi.org/10.1167/iovs.05-0647

    Article  Google Scholar 

  68. Tovar-Vidales T, Fitzgerald AM, Clark AF (2016) Human trabecular meshwork cells express BMP antagonist mRNAs and proteins. Exp Eye Res 147: 156-160 DOI https://doi.org/10.1016/j.exer.2016.05.004

    Article  Google Scholar 

  69. Sabanay I, Tian B, Gabelt BT, Geiger B, Kaufman PL (2006) Latrunculin B effects on trabecular meshwork and corneal endothelial morphology in monkeys. Exp Eye Res 82: 236-246 DOI https://doi.org/10.1016/j.exer.2005.06.017

    Article  Google Scholar 

  70. Ethier CR, Read AT, Chan DW (2006) Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. Invest Ophthalmol Vis Sci 47: 1991-1998 DOI https://doi.org/10.1167/iovs.05-0327

    Article  Google Scholar 

  71. De Groef L, Van Hove I, Dekeyster E, Stalmans I, Moons L (2013) MMPs in the trabecular meshwork: promising targets for future glaucoma therapies? Invest Ophthalmol Vis Sci 54: 7756-7763 DOI https://doi.org/10.1167/iovs.13-13088

    Article  Google Scholar 

  72. De Groef L, Van Hove I, Dekeyster E, Stalmans I, Moons L (2014) MMPs in the neuroretina and optic nerve: modulators of glaucoma pathogenesis and repair? Invest Ophthalmol Vis Sci 55: 1953-1964 DOI https://doi.org/10.1167/iovs.13-13630

    Article  Google Scholar 

  73. Chang JY, Stamer WD, Bertrand J, Read AT, Marando CM, Ethier CR, Overby DR (2015) Role of nitric oxide in murine conventional outflow physiology. Am J Physiol Cell Physiol 309: C205-214 DOI https://doi.org/10.1152/ajpcell.00347.2014

    Article  Google Scholar 

  74. Tamm ER (2002) Myocilin and glaucoma: facts and ideas. Prog Retin Eye Res 21: 395-428

    Article  Google Scholar 

  75. Kasetti RB, Phan TN, Millar JC, Zode GS (2016) Expression of Mutant Myocilin Induces Abnormal Intracellular Accumulation of Selected Extracellular Matrix Proteins in the Trabecular Meshwork. Invest Ophthalmol Vis Sci 57: 6058-6069 DOI https://doi.org/10.1167/iovs.16-19610

    Article  Google Scholar 

  76. Paulaviciute-Baikstiene D, Barsauskaite R, Januleviciene I (2013) New insights into pathophysiological mechanisms regulating conventional aqueous humor outflow. Medicina (Kaunas) 49: 165-169

    Article  Google Scholar 

  77. Saheb H, Ahmed, II (2012) Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 23: 96-104 DOI https://doi.org/10.1097/ICU.0b013e32834ff1e7

    Article  Google Scholar 

  78. Herdener S, Pache M (2007) [Excimer laser trabeculotomy: minimally invasive glaucoma surgery]. Ophthalmologe 104: 730-732 DOI https://doi.org/10.1007/s00347-007-1598-6

    Article  Google Scholar 

  79. Pache M, Wilmsmeyer S, Funk J (2006) [Laser surgery for glaucoma: excimer-laser trabeculotomy]. Klin Monbl Augenheilkd 223: 303-307 DOI https://doi.org/10.1055/s-2005-858861

    Article  Google Scholar 

  80. Toteberg-Harms M, Ciechanowski PP, Hirn C, Funk J (2011) [One-year results after combined cataract surgery and excimer laser trabeculotomy for elevated intraocular pressure]. Ophthalmologe 108: 733-738 DOI https://doi.org/10.1007/s00347-011-2337-6

    Article  Google Scholar 

  81. Toteberg-Harms M, Hanson JV, Funk J (2013) Cataract surgery combined with excimer laser trabeculotomy to lower intraocular pressure: effectiveness dependent on preoperative IOP. BMC Ophthalmol 13: 24 DOI https://doi.org/10.1186/1471-2415-13-24

  82. Toteberg-Harms M, Wachtl J, Schweier C, Funk J, Kniestedt C (2017) Long-term efficacy of combined phacoemulsification plus trabeculectomy versus phacoemulsification plus excimer laser trabeculotomy. Klin Monbl Augenheilkd 234: 457-463 DOI https://doi.org/10.1055/s-0043-100291

    Article  Google Scholar 

  83. Walker R, Specht H (2002) [Theoretical and physical aspects of excimer laser trabeculotomy (ELT) ab interno with the AIDA laser with a wave length of 308 mm]. Biomed Tech (Berl) 47: 106-110

    Google Scholar 

  84. Wilmsmeyer S, Philippin H, Funk J (2006) Excimer laser trabeculotomy: a new, minimally invasive procedure for patients with glaucoma. Graefes Arch Clin Exp Ophthalmol 244: 670-676 DOI https://doi.org/10.1007/s00417-005-0136-y

    Article  Google Scholar 

  85. Berlin MS, Rajacich G, Duffy M, Grundfest W, Goldenberg T (1987) Excimer laser photoablation in glaucoma filtering surgery. Am J Ophthalmol 103: 713-714

    Article  Google Scholar 

  86. Spiegel D, Garcia-Feijoo J, Garcia-Sanchez J, Lamielle H (2008) Coexistent primary open-angle glaucoma and cataract: preliminary analysis of treatment by cataract surgery and the iStent trabecular micro-bypass stent. Adv Ther 25: 453-464 DOI https://doi.org/10.1007/s12325-008-0062-6

    Article  Google Scholar 

  87. Bahler CK, Hann CR, Fjield T, Haffner D, Heitzmann H, Fautsch MP (2012) Second-generation trabecular meshwork bypass stent (iStent inject) increases outflow facility in cultured human anterior segments. Am J Ophthalmol 153: 1206-1213 DOI https://doi.org/10.1016/j.ajo.2011.12.017

    Article  Google Scholar 

  88. Akil H, Chopra V, Huang AS, Swamy R, Francis BA (2017) Short-Term Clinical Results of Ab Interno Trabeculotomy Using the Trabectome with or without Cataract Surgery for Open-Angle Glaucoma Patients of High Intraocular Pressure. J Ophthalmol 2017: 8248710 DOI https://doi.org/10.1155/2017/8248710

    Article  Google Scholar 

  89. Gunderson E (2008) Trabeculotomy Ab Interno, using the Trabectome: a promising treatment for patients with open-angle glaucoma. Insight 33: 13-15

    Google Scholar 

  90. Minckler D, Mosaed S, Francis B, Loewen N, Weinreb RN (2014) Clinical results of ab interno trabeculotomy using the Trabectome for open-angle glaucoma: the mayo clinic series in Rochester, Minnesota. Am J Ophthalmol 157: 1325-1326 DOI https://doi.org/10.1016/j.ajo.2014.02.030

    Article  Google Scholar 

  91. Hoeh H, Vold SD, Ahmed IK, Anton A, Rau M, Singh K, Chang DF, Shingleton BJ, Ianchulev T (2016) Initial Clinical Experience With the CyPass Micro-Stent: Safety and Surgical Outcomes of a Novel Supraciliary Microstent. J Glaucoma 25: 106-112 DOI https://doi.org/10.1097/IJG.0000000000000134

    Article  Google Scholar 

  92. Hoh H, Grisanti S, Grisanti S, Rau M, Ianchulev S (2014) Two-year clinical experience with the CyPass micro-stent: safety and surgical outcomes of a novel supraciliary micro-stent. Klin Monbl Augenheilkd 231: 377-381 DOI https://doi.org/10.1055/s-0034-1368214

    Article  Google Scholar 

  93. Huisingh C, McGwin G (2014) Response: Optical coherence tomography of the suprachoroid after CyPass Micro-Stent implantation for the treatment of open angle glaucoma. Br J Ophthalmol 98: 847 DOI https://doi.org/10.1136/bjophthalmol-2013-304806

    Article  Google Scholar 

  94. Saheb H, Ianchulev T, Ahmed, II (2014) Optical coherence tomography of the suprachoroid after CyPass Micro-Stent implantation for the treatment of open-angle glaucoma. Br J Ophthalmol 98: 19-23 DOI https://doi.org/10.1136/bjophthalmol-2012-302951

    Article  Google Scholar 

  95. Gavris MM, Olteanu I, Kantor E, Mateescu R, Belicioiu R (2017) IRIDEX MicroPulse P3: innovative cyclophotocoagulation. Rom J Ophthalmol 61: 107-111

    Article  Google Scholar 

  96. Lee JH, Shi Y, Amoozgar B, Aderman C, De Alba Campomanes A, Lin S, Han Y (2017) Outcome of Micropulse Laser Transscleral Cyclophotocoagulation on Pediatric Versus Adult Glaucoma Patients. J Glaucoma 26: 936-939 DOI https://doi.org/10.1097/IJG.0000000000000757

    Article  Google Scholar 

  97. Emanuel ME, Grover DS, Fellman RL, Godfrey DG, Smith O, Butler MR, Kornmann HL, Feuer WJ, Goyal S (2017) Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma. J Glaucoma 26: 726-729 DOI https://doi.org/10.1097/IJG.0000000000000715

    Article  Google Scholar 

  98. Kuchar S, Moster MR, Reamer CB, Waisbourd M (2016) Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 31: 393-396 DOI https://doi.org/10.1007/s10103-015-1856-9

    Article  Google Scholar 

  99. Aquino MC, Barton K, Tan AM, Sng C, Li X, Loon SC, Chew PT (2015) Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 43: 40-46 DOI https://doi.org/10.1111/ceo.12360

    Article  Google Scholar 

  100. Tan AM, Chockalingam M, Aquino MC, Lim ZI, See JL, Chew PT (2010) Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol 38: 266-272 DOI https://doi.org/10.1111/j.1442-9071.2010.02238.x

  101. Budenz DL, Barton K, Gedde SJ, Feuer WJ, Schiffman J, Costa VP, Godfrey DG, Buys YM, Ahmed Baerveldt Comparison Study G (2015) Five-year treatment outcomes in the Ahmed Baerveldt comparison study. Ophthalmology 122: 308-316 DOI https://doi.org/10.1016/j.ophtha.2014.08.043

    Article  Google Scholar 

  102. Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL, Tube Versus Trabeculectomy Study G (2009) Three-year follow-up of the tube versus trabeculectomy study. Am J Ophthalmol 148: 670-684 DOI https://doi.org/10.1016/j.ajo.2009.06.018

    Article  Google Scholar 

  103. Hohberger B, Welge-Lussen UC, Lammer R (2018) MIGS: therapeutic success of combined Xen Gel Stent implantation with cataract surgery. Graefes Arch Clin Exp Ophthalmol DOI https://doi.org/10.1007/s00417-017-3895-3

    Article  Google Scholar 

  104. Dupont G, Collignon N (2016) [New Surgical Approach in Primary Open-Angle Glaucoma: Xen Gel Stent a Minimally Invasive Technique]. Rev Med Liege 71: 90-93

    Google Scholar 

  105. Winkler NF, Funk J (2013) [Transscleral cyclophotocoagulation as primary surgical intervention in glaucoma]. Klin Monbl Augenheilkd 230: 353-357 DOI https://doi.org/10.1055/s-0032-1328359

    Article  Google Scholar 

  106. Spencer AF, Vernon SA (1999) "Cyclodiode": results of a standard protocol. Br J Ophthalmol 83: 311-316

    Article  Google Scholar 

  107. Schlote T, Grub M, Kynigopoulos M (2008) Long-term results after transscleral diode laser cyclophotocoagulation in refractory posttraumatic glaucoma and glaucoma in aphakia. Graefes Arch Clin Exp Ophthalmol 246: 405-410 DOI https://doi.org/10.1007/s00417-007-0708-0

    Article  Google Scholar 

  108. Rotchford AP, Jayasawal R, Madhusudhan S, Ho S, King AJ, Vernon SA (2010) Transscleral diode laser cycloablation in patients with good vision. Br J Ophthalmol 94: 1180-1183 DOI https://doi.org/10.1136/bjo.2008.145565

    Article  Google Scholar 

  109. Pucci V, Tappainer F, Borin S, Bellucci R (2003) Long-term follow-up after transscleral diode laser photocoagulation in refractory glaucoma. Ophthalmologica 217: 279-283 DOI https://doi.org/10.1159/000070635

    Article  Google Scholar 

  110. Pucci V, Marchini G, Pedrotti E, Morselli S, Bonomi L (2001) Transscleral diode laser photocoagulation in refractory glaucoma. Ophthalmologica 215: 263-266 DOI https://doi.org/10.1159/000050871

    Article  Google Scholar 

  111. Leszczynski R, Gierek-Lapinska A, Forminska - Kapuscik M (2004) Transscleral cyclophotocoagulation in the treatment of secondary glaucoma. Med Sci Monit 10: CR542-548

    Google Scholar 

  112. Kosoko O, Gaasterland DE, Pollack IP, Enger CL (1996) Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology 103: 1294-1302

    Article  Google Scholar 

  113. Hauber FA, Scherer WJ (2002) Influence of total energy delivery on success rate after contact diode laser transscleral cyclophotocoagulation: a retrospective case review and meta-analysis. J Glaucoma 11: 329-333

    Article  Google Scholar 

  114. Chen J, Cohn RA, Lin SC, Cortes AE, Alvarado JA (1997) Endoscopic photocoagulation of the ciliary body for treatment of refractory glaucomas. Am J Ophthalmol 124: 787-796

    Article  Google Scholar 

  115. Uram M (1992) Ophthalmic laser microendoscope endophotocoagulation. Ophthalmology 99: 1829-1832

    Article  Google Scholar 

  116. Uram M (1992) Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma. Ophthalmology 99: 1823-1828

    Article  Google Scholar 

  117. Uram M (1995) Combined phacoemulsification, endoscopic ciliary process photocoagulation, and intraocular lens implantation in glaucoma management. Ophthalmic Surg 26: 346-352

    Google Scholar 

  118. Lima FE, Magacho L, Carvalho DM, Susanna R, Jr., Avila MP (2004) A prospective, comparative study between endoscopic cyclophotocoagulation and the Ahmed drainage implant in refractory glaucoma. J Glaucoma 13: 233-237

    Google Scholar 

  119. Lindfield D, Ritchie RW, Griffiths MF (2012) 'Phaco-ECP': combined endoscopic cyclophotocoagulation and cataract surgery to augment medical control of glaucoma. BMJ Open 2 DOI https://doi.org/10.1136/bmjopen-2011-000578

    Article  Google Scholar 

  120. Bellows AR, Grant WM (1973) Cyclocryotherapy in advanced inadequately controlled glaucoma. Am J Ophthalmol 75: 679-684

    Article  Google Scholar 

  121. Bellows AR, Grant WM (1978) Cyclocryotherapy of chronic open-angle glaucoma in aphakic eyes. Am J Ophthalmol 85: 615-621

    Article  Google Scholar 

  122. Caprioli J, Strang SL, Spaeth GL, Poryzees EH (1985) Cyclocryotherapy in the treatment of advanced glaucoma. Ophthalmology 92: 947-954

    Article  Google Scholar 

  123. De Roetth A, Jr. (1968) Cryosurgery for the treatment of advanced chronic simple glaucoma. Am J Ophthalmol 66: 1034-1041

    Google Scholar 

  124. De Roetth A, Jr. (1968) Cryosurgery for the treatment of advanced chronic simple glaucoma. Trans Am Ophthalmol Soc 66: 45-61

    Google Scholar 

  125. Ishida K (2013) Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol 24: 102-110 DOI https://doi.org/10.1097/ICU.0b013e32835d9335

    Article  Google Scholar 

  126. Cohen A, Wong SH, Patel S, Tsai JC (2017) Endoscopic cyclophotocoagulation for the treatment of glaucoma. Surv Ophthalmol 62: 357-365 DOI https://doi.org/10.1016/j.survophthal.2016.09.004

    Article  Google Scholar 

  127. Englert JA, Cox TA, Allingham RR, Shields MB (1997) Argon vs diode laser trabeculoplasty. Am J Ophthalmol 124: 627-631

    Article  Google Scholar 

  128. Latina MA, Park C (1995) Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions. Exp Eye Res 60: 359-371

    Article  Google Scholar 

  129. Amon M, Menapace R, Radax U, Wedrich A, Skorpik C (1990) Long-term follow-up of argon laser trabeculoplasty in uncontrolled primary open-angle glaucoma. A study with standardized extensive preoperative treatment. Ophthalmologica 200: 181-188

    Article  Google Scholar 

  130. Wise JB, Witter SL (1979) Argon laser therapy for open-angle glaucoma. A pilot study. Arch Ophthalmol 97: 319-322

    Article  Google Scholar 

  131. Juzych MS, Chopra V, Banitt MR, Hughes BA, Kim C, Goulas MT, Shin DH (2004) Comparison of long-term outcomes of selective laser trabeculoplasty versus argon laser trabeculoplasty in open-angle glaucoma. Ophthalmology 111: 1853-1859 DOI https://doi.org/10.1016/j.ophtha.2004.04.030

    Article  Google Scholar 

  132. Martinez-de-la-Casa JM, Garcia-Feijoo J, Castillo A, Matilla M, Macias JM, Benitez-del-Castillo JM, Garcia-Sanchez J (2004) Selective vs argon laser trabeculoplasty: hypotensive efficacy, anterior chamber inflammation, and postoperative pain. Eye (Lond) 18: 498-502 DOI https://doi.org/10.1038/sj.eye.6700695

    Article  Google Scholar 

  133. Polat J, Grantham L, Mitchell K, Realini T (2016) Repeatability of selective laser trabeculoplasty. Br J Ophthalmol 100: 1437-1441 DOI https://doi.org/10.1136/bjophthalmol-2015-307486

    Article  Google Scholar 

  134. Toteberg-Harms M, Rhee DJ (2013) Selective laser trabeculoplasty following failed combined phacoemulsification cataract extraction and ab interno trabeculectomy. Am J Ophthalmol 156: 936-940 e932 DOI https://doi.org/10.1016/j.ajo.2013.05.044

    Article  Google Scholar 

  135. Nagar M, Ogunyomade A, O'Brart DP, Howes F, Marshall J (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89: 1413-1417 DOI https://doi.org/10.1136/bjo.2004.052795

    Article  Google Scholar 

  136. Reitsamer H, Sng C, Vera V, Lenzhofer M, Barton K, Stalmans I; Apex Study Group. Two-year results of a multicenter study of the ab interno gelatin implant in medically uncontrolled primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2019 May;257(5):983-996.

    Article  Google Scholar 

  137. Pinchuk L, Riss I, Batlle JF, Kato YP, Martin JB, Arrieta E, Palmberg P, Parrish RK, Weber BA, Kwon Y, Parel JM. The use of poly(styrene-block-isobutylene-block-styrene) as a microshunt to treat glaucoma. Regen Biomater. 2016 Jun;3(2):137-42.

    Article  Google Scholar 

  138. Pinchuk L, Riss I, Batlle JF, Kato YP, Martin JB, Arrieta E, Palmberg P, Parrish RK 2nd, Weber BA, Kwon Y, Parel JM. The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma. J Biomed Mater Res B Appl Biomater. 2017 Jan;105(1):211-221.

    Article  Google Scholar 

  139. Batlle JF, Fantes F, Riss I, Pinchuk L, Alburquerque R, Kato YP, Arrieta E, Peralta AC, Palmberg P, Parrish RK 2nd, Weber BA, Parel JM. Three-Year Follow-up of a Novel Aqueous Humor MicroShunt. J Glaucoma. 2016 Feb;25(2):e58-65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meier-Gibbons, F., Töteberg-Harms, M. (2019). Aqueous Humor Dynamics and Its Influence on Glaucoma. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_7

Download citation

Publish with us

Policies and ethics