Skip to main content

CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1223))

Abstract

Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R’s role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  2. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  CAS  PubMed  Google Scholar 

  3. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  4. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    Article  PubMed  Google Scholar 

  6. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Liu JQ, Talebian F, El-Omrani HY, Khattabi M, Yu L, Bai XF (2010) Tumor expression of CD200 inhibits IL-10 production by tumor-associated myeloid cells and prevents tumor immune evasion of CTL therapy. Eur J Immunol 40:2569–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talebian F, Liu JQ, Liu Z, Khattabi M, He Y, Ganju R, Bai XF (2012) Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell functions. PLoS One 7:e31442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu JQ, Talebian F, Wu L, Liu Z, Li MS, Wu L, Zhu J, Markowitz J, Carson WE 3rd, Basu S, Bai XF (2016) A critical role for CD200R Signaling in limiting the growth and metastasis of CD200+ melanoma. J Immunol 197:1489–1497

    Article  CAS  PubMed  Google Scholar 

  10. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Mohler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197

    Article  CAS  PubMed  Google Scholar 

  11. Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, Darley RL (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21:566–568

    Article  CAS  PubMed  Google Scholar 

  12. Mahadevan D, Lanasa MC, Farber C, Pandey M, Whelden M, Faas SJ, Ulery T, Kukreja A, Li L, Bedrosian CL, Zhang X, Heffner LT (2019) Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200. J Immunother Cancer 7:227

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barclay AN, Clark MJ, McCaughan GW (1986) Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Biochem Soc Symp 51:149–157

    CAS  PubMed  Google Scholar 

  14. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68:159–167

    Article  CAS  PubMed  Google Scholar 

  15. Ragheb R, Abrahams S, Beecroft R, Hu J, Ni J, Ramakrishna V, Yu G, Gorczynski RM (1999) Preparation and functional properties of monoclonal antibodies to human, mouse and rat OX-2. Immunol Lett 68:311–315

    Article  CAS  PubMed  Google Scholar 

  16. Dick AD, Broderick C, Forrester JV, Wright GJ (2001) Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthalmol Vis Sci 42:170–176

    CAS  PubMed  Google Scholar 

  17. Rosenblum MD, Olasz EB, Yancey KB, Woodliff JE, Lazarova Z, Gerber KA, Truitt RL (2004) Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance? J Invest Dermatol 123:880–887

    Article  CAS  PubMed  Google Scholar 

  18. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117:3922–3929

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122

    Article  CAS  PubMed  Google Scholar 

  21. Love JE, Thompson K, Kilgore MR, Westerhoff M, Murphy CE, Papanicolau-Sengos A, McCormick KA, Shankaran V, Vandeven N, Miller F, Blom A, Nghiem PT, Kussick SJ (2017) CD200 expression in neuroendocrine neoplasms. Am J Clin Pathol 148:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285–290

    Article  CAS  PubMed  Google Scholar 

  23. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, Song Y, Jenmalm M, Gorman D, McClanahan T, Liu MR, Brown MH, Sedgwick JD, Phillips JH, Barclay AN (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171:3034–3046

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Cherwinski H, Sedgwick JD, Phillips JH (2004) Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 173:6786–6793

    Article  CAS  PubMed  Google Scholar 

  25. Mihrshahi R, Barclay AN, Brown MH (2009) Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 183:4879–4886

    Article  CAS  PubMed  Google Scholar 

  26. Minas K, Liversidge J (2006) Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal? Crit Rev Immunol 26:213–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mihrshahi R, Brown MH (2010) Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J Immunol 185:7216–7222

    Article  CAS  PubMed  Google Scholar 

  28. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD (2006) Regulation of myeloid cell function through the CD200 receptor. J Immunol 176:191–199

    Article  CAS  PubMed  Google Scholar 

  29. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    Article  CAS  PubMed  Google Scholar 

  30. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083

    Article  CAS  PubMed  Google Scholar 

  31. Simelyte E, Alzabin S, Boudakov I, Williams R (2010) CD200R1 regulates the severity of arthritis but has minimal impact on the adaptive immune response. Clin Exp Immunol 162:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L (2008) The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 45:1126–1135

    Article  CAS  PubMed  Google Scholar 

  33. Rygiel TP, Meyaard L (2012) CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol 24:233–238

    Article  CAS  PubMed  Google Scholar 

  34. Rygiel TP, Rijkers ES, de Ruiter T, Stolte EH, van der Valk M, Rimmelzwaan GF, Boon L, van Loon AM, Coenjaerts FE, Hoek RM, Tesselaar K, Meyaard L (2009) Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 183:1990–1996

    Article  CAS  PubMed  Google Scholar 

  35. Rygiel TP, Karnam G, Goverse G, van der Marel AP, Greuter MJ, van Schaarenburg RA, Visser WF, Brenkman AB, Molenaar R, Hoek RM, Mebius RE, Meyaard L (2012) CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene 31:2979–2988

    Article  CAS  PubMed  Google Scholar 

  36. Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K, Boudakov I (2009) Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 183:1560–1568

    Article  CAS  PubMed  Google Scholar 

  37. Alapat D, Coviello-Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD, Lorsbach RB (2012) Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 137:93–100

    Article  PubMed  Google Scholar 

  38. D’Arena G, Valvano L, Vitale C, Coscia M, Statuto T, Bellesi S, Lamorte D, Musto P, Laurenti L, D’Auria F (2019) CD200 and prognosis in chronic lymphocytic leukemia: conflicting results. Leuk Res 83:106169

    Article  PubMed  Google Scholar 

  39. Rexin P, Tauchert A, Hanze J, Heers H, Schmidt A, Hofmann R, Hegele A (2018) The immune checkpoint molecule CD200 is associated with tumor grading and metastasis in bladder cancer. Anticancer Res 38:2749–2754

    CAS  PubMed  Google Scholar 

  40. Clark DA, Dhesy-Thind S, Ellis P, Ramsay J (2014) The CD200-tolerance signaling molecule associated with pregnancy success is present in patients with early-stage breast cancer but does not favor nodal metastasis. Am J Reprod Immunol 72:435–439

    Article  CAS  PubMed  Google Scholar 

  41. Colmont CS, Benketah A, Reed SH, Hawk NV, Telford WG, Ohyama M, Udey MC, Yee CL, Vogel JC, Patel GK (2013) CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proc Natl Acad Sci U S A 110:1434–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM (2010) The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res 70:2962–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rygiel TP, Karnam G, Goverse G, van der Marel AP, Greuter MJ, van Schaarenburg RA, Visser WF, Brenkman AB, Molenaar R, Hoek RM, Mebius RE, Meyaard L (2012) CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene 31:2979–2988

    Article  CAS  PubMed  Google Scholar 

  44. Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM (2012) Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat 136:117–127

    Article  CAS  PubMed  Google Scholar 

  45. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2015) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34:3860–3870

    Article  CAS  PubMed  Google Scholar 

  46. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belkin DA, Mitsui H, Wang CQ, Gonzalez J, Zhang S, Shah KR, Coats I, Suarez-Farinas M, Krueger JG, Felsen D, Carucci JA (2013) CD200 upregulation in vascular endothelium surrounding cutaneous squamous cell carcinoma. JAMA Dermatol 149:178–186

    Article  CAS  PubMed  Google Scholar 

  48. Ko YC, Chien HF, Jiang-Shieh YF, Chang CY, Pai MH, Huang JP, Chen HM, Wu CH (2009) Endothelial CD200 is heterogeneously distributed, regulated and involved in immune cell-endothelium interactions. J Anat 214:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh A, Falk MK, Hviid TV, Sorensen TL (2013) Increased expression of CD200 on circulating CD11b+ monocytes in patients with neovascular age-related macular degeneration. Ophthalmology 120:1029–1037

    Article  PubMed  Google Scholar 

  50. Xiong Z, Ampudia-Mesias E, Shaver R, Horbinski CM, Moertel CL, Olin MR (2016) Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy. Immunotherapy 8:1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P (2004) Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173:3748–3754

    Article  CAS  PubMed  Google Scholar 

  52. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57:987–996

    Article  CAS  PubMed  Google Scholar 

  53. McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin F, Bowdish KS (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci U S A 103:1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong KK, Khatri I, Shaha S, Spaner DE, Gorczynski RM (2010) The role of CD200 in immunity to B cell lymphoma. J Leukoc Biol 88:361–372

    Article  CAS  PubMed  Google Scholar 

  55. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J (2001) Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin Exp Immunol 126:220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gorczynski RM, Clark DA, Erin N, Khatri I (2011) Role of CD200 expression in regulation of metastasis of EMT6 tumor cells in mice. Breast Cancer Res Treat 130:49–60

    Article  CAS  PubMed  Google Scholar 

  57. Gorczynski RM, Chen Z, Diao J, Khatri I, Wong K, Yu K, Behnke J (2010) Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 123:405–415

    Article  CAS  PubMed  Google Scholar 

  58. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, Frederickson S, Maruyama T, Wild MA, Nolan MJ, Wu D, Springhorn J, Bowdish KS (2007) CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 178:5595–5605

    Article  CAS  PubMed  Google Scholar 

  59. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS (2008) Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 180:699–705

    Article  CAS  PubMed  Google Scholar 

  60. Kretz-Rommel A, Bowdish KS (2008) Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin Biol Ther 8:5–15

    Article  CAS  PubMed  Google Scholar 

  61. Pilch Z, Tonecka K, Braniewska A, Sas Z, Skorzynski M, Boon L, Golab J, Meyaard L, Rygiel TP (2018) Antitumor activity of TLR7 is potentiated by CD200R antibody leading to changes in the tumor microenvironment. Cancer Immunol Res 6:930–940

    Article  CAS  PubMed  Google Scholar 

  62. Oda SK, Daman AW, Garcia NM, Wagener F, Schmitt TM, Tan X, Chapuis AG, Greenberg PD (2017) A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance T-cell function and therapy of murine leukemia. Blood 130:2410–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, JQ., Hu, A., Zhu, J., Yu, J., Talebian, F., Bai, XF. (2020). CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-35582-1_8

Download citation

Publish with us

Policies and ethics