Skip to main content

Advertisement

Log in

Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Previous studies reported that CD200 expression on cells of the transplantable EMT6 mouse breast cancer line was increased during growth in immunocompetent mice. Low levels of expression persisted in NOD-SCID.IL-2γr−/− mice or mice with generalized over-expression of a CD200 transgene (CD200tg mice), despite the faster tumor growth in both of these latter strains. We also showed that CD200 expression (by the host and/or tumor cells) led to increased seeding of tumor cells to DLN in immunocompromised (CD200tg or NOD-SCID.IL-2γr−/−) vs immunocompetent mice, using limiting dilution cloning of tumor cells from DLN (vs contralateral lymph nodes, CLN). Evidence for an important role for CD200 expression in this increased metastasis came from the observation that neutralization of CD200 by anti-CD200mAbs decreased tumor metastasis and increased levels of cytotoxic anti-tumor immune cells in DLN. In the current studies, we have extended these observations by exploring tumor growth/metastasis in CD200R1 KO mice in which we have previously shown, in a transplant model, that expression of CD200 fails to deliver an immunosuppressive signal. In addition, we have studied local and metastatic growth in healthy control mice of EMT6 tumor cells stably transduced with shRNA able to silence CD200 expression. In both scenarios, decreased metastasis was observed, with increased immunity to EMT6 detected by cytotoxicity assays. In addition, adoptive transfer of DLN to control mice attenuated EMT6 metastases implying a potential therapeutic benefit from neutralizing CD200 expression in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pandit TS, Kennette W, MacKenzie L et al (2009) Lymphatic metastasis of breast cancer cells is associated with differential gene expression profiles that predict cancer stem cell- like properties and the ability to survive, establish and grow in a foreign environment. Int J Oncol 35:297–308

    PubMed  CAS  Google Scholar 

  2. Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metastas 26:547–558

    Article  CAS  Google Scholar 

  3. Chen XP, Xu ZT, Wang YT (2011) Recent advances in breast cancer metastasis suppressor 1. Int J Biol Marker 26:1–8

    Article  Google Scholar 

  4. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukocyte Biol 84:623–630

    Article  PubMed  CAS  Google Scholar 

  5. Olkhanud PB, Damdinsuren B, Bodogai M et al (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 71:3505–3515

    Article  PubMed  CAS  Google Scholar 

  6. Lu X, Kang YB (2009) Chemokine (C–C motif) ligand 2 engages CCR2(+) stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096

    Article  PubMed  CAS  Google Scholar 

  7. Chen T, Jackson CR, Link A et al (2006) Int7G24A variant of transforming growth factor-beta receptor type 1 is associated with invasive breast cancer. Clin Cancer Res 12:392–397

    Article  PubMed  CAS  Google Scholar 

  8. Liang ZX, Yoon YH, Votaw J, Goodman MM, Williams L, Shim H (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    PubMed  CAS  Google Scholar 

  9. Takahashi M, Miyazaki H, Furihata M et al (2009) Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastas 26:817–828

    Article  CAS  Google Scholar 

  10. Ma XR, Norsworthy K, Kundu N et al (2009) CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol Cancer Ther 8:490–498

    Article  PubMed  CAS  Google Scholar 

  11. Chen JQ, Yao YD, Gong C et al (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19:541–555

    Article  PubMed  CAS  Google Scholar 

  12. Huang B, Pan PY, Li QS et al (2006) Gr-1(+)CD115(+) immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  13. Yang L, Debusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor GR1+CD11b+cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  14. Qin FXF (2009) Dynamic Behavior and Function of Foxp3(+) Regulatory T Cells in Tumor Bearing Host. Cell Mol Immunol 6:3–13

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Huang JH, Ren XB et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr- 1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  16. Petermann KB, Rozenberg GI, Zedek D et al (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117:3922–3929

    PubMed  CAS  Google Scholar 

  17. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200 Cancer Immunol. Immunotherapy 57:987–996

    Article  CAS  Google Scholar 

  18. Moreaux J, Hose D, Reme T et al (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197

    Article  PubMed  CAS  Google Scholar 

  19. McWhirter JR, KretzRommel A, Saven A et al (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Nat Acad Sci USA 103:1041–1046

    Article  PubMed  CAS  Google Scholar 

  20. Tonks A (2007) CD200 as a prognostic factor in acute myeloid leukemia. Leukemia 21:566–568

    Article  PubMed  CAS  Google Scholar 

  21. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL (2007) Co-expression of the tolerogenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–782

    Article  PubMed  CAS  Google Scholar 

  22. Gorczynski RM, Chen ZQ, Diao J et al (2010) Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 123:405–415

    Article  PubMed  CAS  Google Scholar 

  23. Gorczynski RM, Clark DA, Erin N, Khatri I (2011) Role of CD200 expression in regulation of metastasis of EMT6 tumor cells in mice. Breast Cancer Res Treat 130:49–60

    Article  PubMed  CAS  Google Scholar 

  24. Gorczynski RM, Chen ZQ, He W et al (2009) Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 183:1560–1568

    Article  PubMed  CAS  Google Scholar 

  25. Boudakov I, Liu J, Fan N, Gulay P, Wong K, Gorczynski RM (2007) Mice lacking CD200R1 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-alpha and mixed leukocyte culture responses by CD200. Transplantation 84:251–257

    Article  PubMed  CAS  Google Scholar 

  26. Snedecor GW, Cochrane WG. (1971) In Statistical methods, 6th edn, Iowa State University Press, Amres, Iowa, pp 135-160

  27. Skalova K, Mollova K, Michalek J (2010) Human myeloid dendritic cells for cancer therapy: does maturation matter? Vaccine 28:5153–5160

    Article  PubMed  CAS  Google Scholar 

  28. Walser TC, Ma XR, Kundu N, Dorsey R, Goloubeva O, Fulton AM (2007) Immune-mediated modulation of breast cancer growth and metastasis by the chemokine mig (CXCL9) in a murine model. J Immunother 30:490–498

    Article  PubMed  CAS  Google Scholar 

  29. Baumgartner J, Wilson C, Palmer B, Richter D, Banerjee A, McCarter M (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res 141:72–77

    Article  PubMed  CAS  Google Scholar 

  30. Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH (2007) Follicular lymphoma intratumoral CD4(+)CD25(+)GITR(+) regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8(+)CD25(-) and CD4(+)CD25(-) T cells. J Immunol 178:4051–4061

    PubMed  CAS  Google Scholar 

  31. DiazMontero CM, Salem ML, Nishimura MI, GarrettMayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  Google Scholar 

  32. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    Article  PubMed  CAS  Google Scholar 

  33. Hori S (2010) Developmental plasticity of Foxp3(+) regulatory T cells. Curr Opin Immunol 22:575–582

    Article  PubMed  CAS  Google Scholar 

  34. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by a Grant from the Canadian Cancer Society (CCS) to RMG & DAC.

Conflict of interest

All authors confirm that they have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald M. Gorczynski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podnos, A., Clark, D.A., Erin, N. et al. Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat 136, 117–127 (2012). https://doi.org/10.1007/s10549-012-2258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2258-3

Keywords

Navigation