Skip to main content

Blood Supply and Microcirculation of the Peripheral Nerve

  • Living reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Abstract

The aim of this chapter is to comprehensively compile the current body of knowledge relating to the blood supply and microcirculation of the peripheral nerve. Key findings are summarized to convey to readers which important aspects have been discovered and which further studies could be of special interest. The complex anatomy of the peripheral nerve’s microcirculatory system, its physiology, and pathophysiology as well as its crucial involvement in nerve regeneration are discussed. Special emphasis is placed on the lymphatic system, the involvement of which in peripheral nerve injury and regeneration remains to be elucidated. This chapter focuses on experimental concepts and emerging techniques to deepen our understanding of the peripheral nerve vascular system, both in regard to its function and how it could be modified to enhance nerve regeneration. It concludes with an outlook on clinical applications to improve peripheral nerve (re)vascularization, ranging from vascularized nerve grafts and surgical angiogenesis to bioengineered conduits and the use of stems cells. With the help of this chapter, researchers interested in tissue-engineering will be provided with a broad fundament of knowledge, intended as an aid for the development of new approaches to improve peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams WE (1942) The blood supply of nerves: I. Historical review. J Anat 76:323–341

    Google Scholar 

  • Adams WE (1943) The blood supply of nerves: II. The effects of exclusion of its regional sources of supply on the sciatic nerve of the rabbit. J Anat 77:243–250.3

    Google Scholar 

  • Akhavani MA, Sivakumar B, Paleolog EM, Kang N (2008) Angiogenesis and plastic surgery. J Plast Reconstr Aesthet Surg 61:1425–1437

    Article  Google Scholar 

  • Aloe L, Rocco ML, Bianchi P, Manni L (2012) Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 10:239

    Article  Google Scholar 

  • Appenzeller O, Dhital KK, Cowen T, Burnstock G (1984) The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum. Brain Res 304:383–386

    Article  Google Scholar 

  • Arányi Z, Csillik A, Dévay K, Rosero M (2018) Ultrasonographic demonstration of intraneural neovascularization after penetrating nerve injury. Muscle Nerve 57:994–999

    Article  Google Scholar 

  • Bassilios Habre S, Bond G, Jing XL, Kostopoulos E, Wallace RD, Konofaos P (2018) The surgical management of nerve gaps: present and future. Ann Plast Surg 80:252–261

    Article  Google Scholar 

  • Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, Watson N, Klagsbrun M, Mamluk R, Newgreen DF (2003) Neurovascular congruence results from a shared patterning mechanism that utilizes semaphorin3A and neuropilin-1. Dev Biol 255:77–98

    Article  Google Scholar 

  • Bäumer P, Reimann M, Decker C, Radbruch A, Bendszus M, Heiland S, Pham M (2014) Peripheral nerve perfusion by dynamic contrast-enhanced magnetic resonance imaging: demonstration of feasibility. Investig Radiol 49:518–523

    Article  Google Scholar 

  • Bell MA, Weddell AG (1984a) A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107(Pt 3):871–898

    Article  Google Scholar 

  • Bell MA, Weddell AG (1984b) A morphometric study of intrafascicular vessels of mammalian sciatic nerve. Muscle Nerve 7:524–534

    Article  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  Google Scholar 

  • Bertelli JA, Ghizoni MF (2007) Transfer of the accessory nerve to the suprascapular nerve in brachial plexus reconstruction. J Hand Surg Am 32:989–998

    Article  Google Scholar 

  • Bertelli JA, Taleb M, Mira JC, Calixto JB (1996) Muscle fiber type reorganization and behavioral functional recovery of rat median nerve repair with vascularized or conventional nerve grafts. Restor Neurol Neurosci 10:5–12

    Google Scholar 

  • Berthod F, Germain L, Tremblay N, Auger FA (2006) Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. J Cell Physiol 207:491–498

    Article  Google Scholar 

  • Berthod F, Symes J, Tremblay N, Medin JA, Auger FA (2012) Spontaneous fibroblast-derived pericyte recruitment in a human tissue-engineered angiogenesis model in vitro. J Cell Physiol 227:2130–2137

    Article  Google Scholar 

  • Best TJ, Mackinnon SE (1994) Peripheral nerve revascularization: a current literature review. J Reconstr Microsurg 10:193–204

    Article  Google Scholar 

  • Best TJ, Mackinnon SE, Evans PJ, Hunter D, Midha R (1999a) Peripheral nerve revascularization: histomorphometric study of small- and large-caliber grafts. J Reconstr Microsurg 15:183–190

    Article  Google Scholar 

  • Best TJ, Mackinnon SE, Midha R, Hunter DA, Evans PJ (1999b) Revascularization of peripheral nerve autografts and allografts. Plast Reconstr Surg 104:152–160

    Article  Google Scholar 

  • Bianchi R, Russo E, Bachmann SB, Proulx ST, Sesartic M, Smaadahl N, Watson SP, Buckley CD, Halin C, Detmar M (2017) Postnatal deletion of podoplanin in lymphatic endothelium results in blood filling of the lymphatic system and impairs dendritic cell migration to lymph nodes. Arterioscler Thromb Vasc Biol 37:108–117

    Article  Google Scholar 

  • Bin Z, Zhihu Z, Jianxiong M, Xinlong M (2020) Repairing peripheral nerve defects with revascularized tissue-engineered nerve based on a vascular endothelial growth factor-heparin sustained release system. J Tissue Eng Regen Med 14:819–828

    Article  Google Scholar 

  • Boissaud-Cooke M, Pidgeon TE, Tunstall R (2015) The microcirculation of peripheral nerves: the vasa nervorum. Nerves and Nerve Injuries 1:507–523

    Google Scholar 

  • Borire AA, Visser LH, Padua L, Colebatch JG, Huynh W, Simon NG, Kiernan MC, Krishnan AV (2017) Utility of maximum perfusion intensity as an ultrasonographic marker of intraneural blood flow. Muscle Nerve 55:77–83

    Article  Google Scholar 

  • Bosetti F, Galis ZS, Bynoe MS, Charette M, Cipolla MJ, Del Zoppo GJ, Gould D, Hatsukami TS, Jones TLZ, Koenig JI, Lutty GA, Maric-Bilkan C, Stevens T, Tolunay HE, Koroshetz W, Agalliu D, D’Amato R, Lo EH, Aird W, Antonetti DA, Boehm M, Brooks CE, Faber JE, Caron KM, Chilian W, Daemen MJ, Davis TP, Ergul A, Gomez AR, Peirce-Cottler S, Grayson P, Grumbach I, Suarez Y, Stachenfeld N, Humphrey J, Grutzendler J, Gutterman D, Ramadan I, Mcgavern D, Hallenbeck J, Herman I, Iadecola C, Ubogu EE, Inscho EW, Kleinfeld D, Lopez JA, Macknik S, Malik A, Meininger GA, Miller VM, Nedergaard M, Nelson MT, Rosenberg GA, Schiffrin EL, Searson P, Stan RV, Vexler ZS, Weyand CM, Zlokovic BV (2016) “Small blood vessels: big health problems?”: scientific recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 5:1–12

    Article  Google Scholar 

  • Bouvrée K, Brunet I, Del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V, Miura N, Aigrot MS, Maden CH, Ruhrberg C, Thomas JL, Eichmann A (2012) Semaphorin3A, neuropilin-1, and plexinA1 are required for lymphatic valve formation. Circ Res 111:437–445

    Article  Google Scholar 

  • Bova L, Billi F, Cimetta E (2020) Mini-review: advances in 3D bioprinting of vascularized constructs. Biol Direct 15:22

    Article  Google Scholar 

  • Breidenbach W, Terzis JK (1984) The anatomy of free vascularized nerve grafts. Clin Plast Surg 11:65–71

    Article  Google Scholar 

  • Breidenbach WC, Terzis JK (1986) The blood supply of vascularized nerve grafts. J Reconstr Microsurg 3:43–58

    Article  Google Scholar 

  • Breidenbach WC, Terzis JK (1987) Vascularized nerve grafts: an experimental and clinical review. Ann Plast Surg 18:137–146

    Article  Google Scholar 

  • Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, Bouvrée K, Zhang J, Del Toro R, Mathivet T, Larrivée B, Jagu J, Pibouin-Fragner L, Pardanaud L, Machado MJ, Kennedy TE, Zhuang Z, Simons M, Levy BI, Tessier-Lavigne M, Grenz A, Eltzschig H, Eichmann A (2014) Netrin-1 controls sympathetic arterial innervation. J Clin Invest 124:3230–3240

    Article  Google Scholar 

  • Caillaud M, Richard L, Vallat JM, Desmouliere A, Billet F (2019) Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 14:24–33

    Article  Google Scholar 

  • Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119:1951–1965

    Article  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  Google Scholar 

  • Castets M, Mehlen P (2010) Netrin-1 role in angiogenesis: to be or not to be a pro-angiogenic factor? Cell Cycle 9:1466–1471

    Article  Google Scholar 

  • Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ, Garcia Calavia N, Guo Y, McLaughlin M, Rosenberg LH, Quereda V, Jamecna D, Napoli I, Parrinello S, Enver T, Ruhrberg C, Lloyd AC (2015) Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 162:1127–1139

    Article  Google Scholar 

  • Cavadas PC, Vera-Sempere FJ (1994) Prefabrication of a vascularized nerve graft by vessel implantation: preliminary report of an experimental model. Microsurgery 15:877–881

    Article  Google Scholar 

  • Chalfoun C, Scholz T, Cole MD, Steward E, Vanderkam V, Evans GR (2003) Primary nerve grafting: a study of revascularization. Microsurgery 23:60–65

    Article  Google Scholar 

  • Chang K, Ido Y, LeJeune W, Williamson JR, Tilton RG (1997) Increased sciatic nerve blood flow in diabetic rats: assessment by “molecular” vs. particulate microspheres. Am J Physiol 273:E164–E173

    Google Scholar 

  • Chauvet S, Mann F (2013) The declaration of independence of the neurovascular intimacy. Neuron 80:262–265

    Article  Google Scholar 

  • Chen SH, Huang TC, Wang JY, Wu CC, Hsueh YY (2020) Controllable forces for reproducible chronic constriction injury mimicking compressive neuropathy in rat sciatic nerve. J Neurosci Methods 335:108615

    Article  Google Scholar 

  • Chhabra A (2015) Advanced imaging of peripheral nerves. Semin Musculoskelet Radiol 19:77–78

    Article  Google Scholar 

  • Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA (2001) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50:1927–1937

    Article  Google Scholar 

  • Coppey LJ, Davidson EP, Rinehart TW, Gellett JS, Oltman CL, Lund DD, Yorek MA (2006) ACE inhibitor or angiotensin II receptor antagonist attenuates diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetes 55:341–348

    Article  Google Scholar 

  • Coy R, Al-Badri G, Kayal C, O’Rourke C, Kingham PJ, Phillips JB, Shipley RJ (2020) Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering. J R Soc Interface 17:20190801

    Article  Google Scholar 

  • Crosio A, Ronchi G, Fornasari BE, Odella S, Raimondo S, Tos P (2021) Experimental methods to simulate and evaluate postsurgical peripheral nerve scarring. J Clin Med 10:1613

    Article  Google Scholar 

  • Curley JL, Moore MJ (2011) Facile micropatterning of dual hydrogel systems for 3D models of neurite outgrowth. J Biomed Mater Res A 99:532–543

    Article  Google Scholar 

  • D’Arpa S, Claes KEY, Stillaert F, Colebunders B, Monstrey S, Blondeel P (2015) Vascularized nerve “grafts”: just a graft or a worthwhile procedure? Plast Aesthet Res 2:183–194

    Article  Google Scholar 

  • Daly PJ, Wood MB (1985) Endoneural and epineural blood flow evaluation with free vascularized and conventional nerve grafts in the canine. J Reconstr Microsurg 2:45–49

    Article  Google Scholar 

  • Das A, Merrill P, Wilson J, Turner T, Paige M, Capitosti S, Brown M, Freshcorn B, Sok MCP, Song H, Botchwey EA (2019) Evaluating angiogenic potential of small molecules using genetic network approaches. Regen Eng Transl Med 5:30–41

    Article  Google Scholar 

  • de Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634–643

    Article  Google Scholar 

  • del Pinal F, Garcia-Bernal FJ, Regalado J, Studer A, Cagigal L, Ayala H (2007) The tibial second toe vascularized neurocutaneous free flap for major digital nerve defects. J Hand Surg Am 32:209–217

    Article  Google Scholar 

  • Dhital KK, Appenzeller O (1998) Innervation of the vasa nervorum. In: Burnstock G, Griffith SG (eds) Nonadrenergic innervation of blood vessels. CRC Press, Boca Raton

    Google Scholar 

  • Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J, Gu X (2010) Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A 16:3779–3790

    Article  Google Scholar 

  • Doerffler J (1768) De Vasis Nervorum. Thesis, University of Erlangen

    Google Scholar 

  • Doi K, Kuwata N, Sakai K, Tamaru K, Kawai S (1987) A reliable technique of free vascularized sural nerve grafting and preliminary results of clinical applications. J Hand Surg Am 12:677–684

    Article  Google Scholar 

  • Doi K, Tamaru K, Sakai K, Kuwata N, Kurafuji Y, Kawai S (1992) A comparison of vascularized and conventional sural nerve grafts. J Hand Surg Am 17:670–676

    Article  Google Scholar 

  • Donzelli R, Capone C, Sgulo FG, Mariniello G, Maiuri F (2016) Vascularized nerve grafts: an experimental study. Neurol Res 38:669–677

    Article  Google Scholar 

  • Durward A (1948) The blood supply of nerves. Postgrad Med J 24:11–14

    Article  Google Scholar 

  • Dyck PJ (1989) Hypoxic neuropathy: does hypoxia play a role in diabetic neuropathy? The 1988 Robert Wartenberg lecture. Neurology 39:111–118

    Article  Google Scholar 

  • Dyck PJ, Giannini C (1996) Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol 55:1181–1193

    Article  Google Scholar 

  • Dyck PJ, Hansen S, Karnes J, O’Brien P, Yasuda H, Windebank A, Zimmerman B (1985) Capillary number and percentage closed in human diabetic sural nerve. Proc Natl Acad Sci U S A 82:2513–2517

    Article  Google Scholar 

  • Dyck PJ, Karnes JL, O’Brien P, Okazaki H, Lais A, Engelstad J (1986) The spatial distribution of fiber loss in diabetic polyneuropathy suggests ischemia. Ann Neurol 19:440–449

    Article  Google Scholar 

  • Dyck PJ, Lais AC, Giannini C, Engelstad JK (1990) Structural alterations of nerve during cuff compression. Proc Natl Acad Sci U S A 87:9828–9832

    Article  Google Scholar 

  • Eichmann A, Brunet I (2014) Arterial innervation in development and disease. Sci Transl Med 6:252ps9

    Article  Google Scholar 

  • El-Barrany WG, Marei AG, Vallée B (1999) Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves. Surg Radiol Anat 21:95–102

    Article  Google Scholar 

  • Evans KD, Roll SC, Volz KR, Freimer M (2012) Relationship between intraneural vascular flow measured with sonography and carpal tunnel syndrome diagnosis based on electrodiagnostic testing. J Ultrasound Med 31:729–736

    Article  Google Scholar 

  • Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM (2015) Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells 7:11–26

    Article  Google Scholar 

  • Falco NA, Pribaz JJ, Eriksson E (1992) Vascularization of skin following implantation of an arteriovenous pedicle: implications in flap prefabrication. Microsurgery 13:249–254

    Article  Google Scholar 

  • Fan L, Yu Z, Li J, Dang X, Wang K (2014a) Immunoregulation effects of bone marrow-derived mesenchymal stem cells in xenogeneic acellular nerve grafts transplant. Cell Mol Neurobiol 34:999–1010

    Article  Google Scholar 

  • Fan L, Yu Z, Li J, Dang X, Wang K (2014b) Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskelet Disord 15:165

    Article  Google Scholar 

  • Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G (2016) Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab 36:842–861

    Article  Google Scholar 

  • Fang Z, Ge X, Chen X, Xu Y, Yuan WE, Ouyang Y (2020) Enhancement of sciatic nerve regeneration with dual delivery of vascular endothelial growth factor and nerve growth factor genes. J Nanobiotechnol 18:46

    Article  Google Scholar 

  • Farzan M, Mortazavi SMJ, Asadollahi S (1970) Cubital tunnel syndrome: review of 14 anterior subcutaneous transpositions of the vascularized ulnar nerve. Acta Med Iran 43:84

    Google Scholar 

  • Ferretti A, Boschi E, Stefani A, Spiga S, Romanelli M, Lemmi M, Giovannetti A, Longoni B, Mosca F (2003) Angiogenesis and nerve regeneration in a model of human skin equivalent transplant. Life Sci 73:1985–1994

    Article  Google Scholar 

  • Fink DM, Connor AL, Kelley PM, Steele MM, Hollingsworth MA, Tempero RM (2014) Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS One 9:e112737

    Article  Google Scholar 

  • Firrell J (2019) Peripheral nerve microcirculation. In: Clinically applied microcirculation research. Routledge, London

    Google Scholar 

  • Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227–256

    Article  Google Scholar 

  • Foo A, Martin-Playa P, Sebastin Muttath SJ (2019) Arterialized posterior interosseous nerve graft for digital neuroma. Tech Hand Up Extrem Surg 23:152–154

    Article  Google Scholar 

  • Frueh FS, Gousopoulos E, Power DM, Ampofo E, Giovanoli P, Calcagni M, Laschke MW (2020) A potential role of lymphangiogenesis for peripheral nerve injury and regeneration. Med Hypotheses 135:109470

    Article  Google Scholar 

  • Gao H, You Y, Zhang G, Zhao F, Sha Z, Shen Y (2013) The use of fiber-reinforced scaffolds cocultured with Schwann cells and vascular endothelial cells to repair rabbit sciatic nerve defect with vascularization. Biomed Res Int 2013:362918

    Article  Google Scholar 

  • Garozzo D, Ferraresi S, Buffatti P (2004) Surgical treatment of common peroneal nerve injuries: indications and results. A series of 62 cases. J Neurosurg Sci 48:105–112. Discussion 112

    Google Scholar 

  • Georgiou M, Bunting SC, Davies HA, Loughlin AJ, Golding JP, Phillips JB (2013) Engineered neural tissue for peripheral nerve repair. Biomaterials 34:7335–7343

    Article  Google Scholar 

  • Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB (2015) Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 37:242–251

    Article  Google Scholar 

  • Gerard RW (1927) Studies on nerve metabolism: I. The influence of oxygen lack on heat production and action current. J Physiol 63:280–298

    Article  Google Scholar 

  • Gerard RW (1930) The oxygen consumption of nerve during activity. Science 72:195–196

    Article  Google Scholar 

  • Gerard RW, Hill AV, Zotterman Y (1927) The effect of frequency of stimulation on the heat production of nerve. J Physiol 63:130–143

    Article  Google Scholar 

  • Giannini C, Dyck PJ (1995) Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann Neurol 37:498–504

    Article  Google Scholar 

  • Gingras M, Bergeron J, Dery J, Durham HD, Berthod F (2003) In vitro development of a tissue-engineered model of peripheral nerve regeneration to study neurite growth. FASEB J 17:2124–2126

    Article  Google Scholar 

  • Glebova NO, Ginty DD (2005) Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28:191–222

    Article  Google Scholar 

  • Goedee HS, Brekelmans GJ, van Asseldonk JT, Beekman R, Mess WH, Visser LH (2013) High resolution sonography in the evaluation of the peripheral nervous system in polyneuropathy – a review of the literature. Eur J Neurol 20:1342–1351

    Article  Google Scholar 

  • Gordon T, Tyreman N, Raji MA (2011) The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci 31:5325–5334

    Article  Google Scholar 

  • Graf P, Hawe W, Biemer E (1986) Vascular supply of the ulnar nerve following neurolysis in the area of the elbow. Handchir Mikrochir Plast Chir 18:204–206

    Google Scholar 

  • Grasman JM, Kaplan DL (2017) Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Sci Rep 7:4092

    Article  Google Scholar 

  • Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93:204–230

    Article  Google Scholar 

  • Gugala Z, Olmsted-Davis EA, Xiong Y, Davis EL, Davis AR (2018) Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol 9:408

    Article  Google Scholar 

  • Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee SJ, Fisher JP, Zhang LG (2019) Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res 211:46–63

    Article  Google Scholar 

  • Hattori Y, Doi K, Ikeda K, Pagsaligan JM (2005) Vascularized ulnar nerve graft for reconstruction of a large defect of the median or radial nerves after severe trauma of the upper extremity. J Hand Surg Am 30:986–989

    Article  Google Scholar 

  • Heimel P, Swiadek NV, Slezak P, Kerbl M, Schneider C, Nürnberger S, Redl H, Teuschl AH, Hercher D (2019) Iodine-enhanced micro-CT imaging of soft tissue on the example of peripheral nerve regeneration. Contrast Media Mol Imaging 2019:7483745

    Article  Google Scholar 

  • Heinzel JC, Gloeckel M, Gruber A, Heher P, Hercher D (2020) Fibrin in nerve tissue engineering. In: Phillips J, Hercher D, Hausner T (eds) Peripheral nerve tissue engineering and regeneration. Springer, Cham

    Google Scholar 

  • Helton ES, Palladino S, Ubogu EE (2017) A novel method for measuring hydraulic conductivity at the human blood-nerve barrier in vitro. Microvasc Res 109:1–6

    Article  Google Scholar 

  • Henn D, Abu-Halima M, Kahraman M, Falkner F, Fischer KS, Barrera JA, Chen K, Gurtner GC, Keller A, Kneser U, Meese E, Schmidt VJ (2020a) A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study. Sci Rep 10:21809

    Article  Google Scholar 

  • Henn D, Chen K, Fischer K, Rauh A, Barrera JA, Kim YJ, Martin RA, Hannig M, Niedoba P, Reddy SK, Mao HQ, Kneser U, Gurtner GC, Sacks JM, Schmidt VJ (2020b) Tissue engineering of axially vascularized soft-tissue flaps with a poly-(ɛ-caprolactone) nanofiber-hydrogel composite. Adv Wound Care 9:365–377

    Article  Google Scholar 

  • Hess K, Eames RA, Darveniza P, Gilliatt RW (1979) Acute ischaemic neuropathy in the rabbit. J Neurol Sci 44:19–43

    Article  Google Scholar 

  • Hillenbrand M, Holzbach T, Matiasek K, Schlegel J, Giunta RE (2015) Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy. Neurol Res 37:197–203

    Article  Google Scholar 

  • Hobson MI (2002) Increased vascularisation enhances axonal regeneration within an acellular nerve conduit. Ann R Coll Surg Engl 84:47–53

    Google Scholar 

  • Hobson MI, Brown R, Green CJ, Terenghi G (1997) Inter-relationships between angiogenesis and nerve regeneration: a histochemical study. Br J Plast Surg 50:125–131

    Article  Google Scholar 

  • Hobson MI, Green CJ, Terenghi G (2000) VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 197(Pt 4):591–605

    Article  Google Scholar 

  • Höke A, Sun HS, Gordon T, Zochodne DW (2001) Do denervated peripheral nerve trunks become ischemic? The impact of chronic denervation on vasa nervorum. Exp Neurol 172:398–406

    Article  Google Scholar 

  • Holzgrefe RE, Wagner ER, Singer AD, Daly CA (2019) Imaging of the peripheral nerve: concepts and future direction of magnetic resonance neurography and ultrasound. J Hand Surg Am 44:1066–1079

    Article  Google Scholar 

  • Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15:86–91

    Article  Google Scholar 

  • Horch RE, Beier JP, Kneser U, Arkudas A (2014) Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med 18:1478–1485

    Article  Google Scholar 

  • Hromada J (1963) On the nerve supply of the connective tissue of some peripheral nervous system components. Acta Anat 55:343–351

    Article  Google Scholar 

  • Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, Yang Y, Ding F, Gu X (2013) Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 34:100–111

    Article  Google Scholar 

  • Hunter JM, Jaeger SH, Matsui T, Miyaji N (1983) The pseudosynovial sheath – its characteristics in a primate model. J Hand Surg Am 8:461–470

    Article  Google Scholar 

  • Hur J, Jang JH, Oh IY, Choi JI, Yun JY, Kim J, Choi YE, Ko SB, Kang JA, Kang J, Lee SE, Lee H, Park YB, Kim HS (2014) Human podoplanin-positive monocytes and platelets enhance lymphangiogenesis through the activation of the podoplanin/CLEC-2 axis. Mol Ther 22:1518–1529

    Article  Google Scholar 

  • Hyrtl J (1846) Lehrbuch der Anatomie des Menschen. Prag, Verlag von Friedrich Ehrlich, p 816

    Google Scholar 

  • Iijima Y, Ajiki T, Murayama A, Takeshita K (2016) Effect of artificial nerve conduit vascularization on peripheral nerve in a necrotic bed. Plast Reconstr Surg Glob Open 4:e665

    Article  Google Scholar 

  • Isaacs J, Browne T (2014) Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft. Hand 9:131–137

    Article  Google Scholar 

  • Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823

    Article  Google Scholar 

  • James JM, Mukouyama YS (2011) Neuronal action on the developing blood vessel pattern. Semin Cell Dev Biol 22:1019–1027

    Article  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  Google Scholar 

  • Joy V, Therimadasamy AK, Chan YC, Wilder-Smith EP (2011) Combined Doppler and B-mode sonography in carpal tunnel syndrome. J Neurol Sci 308:16–20

    Article  Google Scholar 

  • Jurisic G, Maby-El Hajjami H, Karaman S, Ochsenbein AM, Alitalo A, Siddiqui SS, Ochoa Pereira C, Petrova TV, Detmar M (2012) An unexpected role of semaphorin3a–neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res 111:426–436

    Article  Google Scholar 

  • Kadiyala RK, Ramirez A, Taylor AE, Saltzman CL, Cassell MD (2005) The blood supply of the common peroneal nerve in the popliteal fossa. J Bone Joint Surg Br 87:337–342

    Article  Google Scholar 

  • Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, Vacanti JP (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6:105–117

    Article  Google Scholar 

  • Kaizawa Y, Kakinoki R, Ikeguchi R, Ohta S, Noguchi T, Oda H, Matsuda S (2016) Bridging a 30 mm defect in the canine ulnar nerve using vessel-containing conduits with implantation of bone marrow stromal cells. Microsurgery 36:316–324

    Article  Google Scholar 

  • Kaizawa Y, Kakinoki R, Ikeguchi R, Ohta S, Noguchi T, Takeuchi H, Oda H, Yurie H, Matsuda S (2017) A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transplant 26:215–228

    Article  Google Scholar 

  • Kakinoki R, Nishijima N, Ueba Y, Oka M, Yamamuro T, Nakamura T (1997) Nerve regeneration over a 25 mm gap in rat sciatic nerves using tubes containing blood vessels: the possibility of clinical application. Int Orthop 21:332–336

    Article  Google Scholar 

  • Kallio PK, Vastamaki M (1993) An analysis of the results of late reconstruction of 132 median nerves. J Hand Surg Br 18:97–105

    Article  Google Scholar 

  • Kanaya F, Firrell J, Tsai TM, Breidenbach WC (1992) Functional results of vascularized versus nonvascularized nerve grafting. Plast Reconstr Surg 89:924–930

    Article  Google Scholar 

  • Kaplan HM, Mishra P, Kohn J (2015) The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 26:226

    Article  Google Scholar 

  • Khoshakhlagh P, Moore MJ (2015) Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable scaffold for neurite growth. Acta Biomater 16:23–34

    Article  Google Scholar 

  • Kihara M, Low PA (1990) Regulation of rat nerve blood flow: role of epineurial alpha-receptors. J Physiol 422:145–152

    Article  Google Scholar 

  • Kihara M, Low PA (1995) Vasoreactivity to prostaglandins of rat peripheral nerve. J Physiol 484:463–467

    Article  Google Scholar 

  • Kihara M, Zollman PJ, Schmelzer JD, Low PA (1993) The influence of dose of microspheres on nerve blood flow, electrophysiology, and fiber degeneration of rat peripheral nerve. Muscle Nerve 16:1383–1389

    Article  Google Scholar 

  • Kihara M, Nakasaka Y, Mitsui Y, Takahashi M, Schmelzer JD (2000) Aging differentially modifies sensitivity of nerve blood flow to vasocontractile agents (endothelin-1, noradrenaline and angiotensin II) in sciatic nerve. Mech Ageing Dev 114:5–14

    Article  Google Scholar 

  • Kobayashi M, Zochodne DW (2018) Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig 9:1239–1254

    Article  Google Scholar 

  • Koistinaho J, Wadhwani KC, Balbo A, Rapoport SI (1991) Regeneration of perivascular adrenergic innervation in rat tibial nerve after nerve crush. Acta Neuropathol 81:486–490

    Article  Google Scholar 

  • Kolte D, McClung JA, Aronow WS (2016) Chapter 6. Vasculogenesis and angiogenesis. In: Aronow WS, McClung JA (eds) Translational research in coronary artery disease. Academic Press, Boston

    Google Scholar 

  • Kornfeld T, Vogt PM, Radtke C (2019) Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien Med Wochenschr 169:240–251

    Article  Google Scholar 

  • Korthals JK, Gieron MA, Dyck PJ (1988) Intima of epineurial arterioles is increased in diabetic polyneuropathy. Neurology 38:1582–1586

    Article  Google Scholar 

  • Kosaka M (1990) Enhancement of rat peripheral nerve regeneration through artery-including silicone tubing. Exp Neurol 107:69–77

    Article  Google Scholar 

  • Koshima I, Harii K (1985) Experimental study of vascularized nerve grafts: morphometric study of axonal regeneration of nerves transplanted into silicone tubes. Ann Plast Surg 14:235–243

    Article  Google Scholar 

  • Krug C, Beer A, Hartmann B, Prein C, Clause-Schaumann H, Holzbach T, Aszodi A, Giunta RE, Saller MM, Volkmer E (2019) Fibrin glue displays promising in vitro characteristics as a potential carrier of adipose progenitor cells for tissue regeneration. J Tissue Eng Regen Med 13:359–368

    Article  Google Scholar 

  • Kuhlmann T, Bitsch A, Stadelmann C, Siebert H, Bruck W (2001) Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen. J Neurosci 21:3401–3408

    Article  Google Scholar 

  • Kutlar N, Bayrak AO, Bayrak İK, Canbaz S, Türker H (2017) Diagnosing carpal tunnel syndrome with Doppler ultrasonography: a comparison of ultrasonographic measurements and electrophysiological severity. Neurol Res 39:126–132

    Article  Google Scholar 

  • Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH (2018) Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res 22:36

    Article  Google Scholar 

  • Kwon JG, Choi YJ, Kim SC, Hong JP, Jeong WS, Oh TS (2019) A technique for safe deep facial tissue dissection: Indocyanine green-assisted intraoperative real-time visualization of the vasa nervorum of facial nerve with a near-infrared camera. J Cranio-Maxillofac Surg 47:1819–1826

    Article  Google Scholar 

  • Lagerlund TD, Low PA (1987) A mathematical simulation of oxygen delivery in rat peripheral nerve. Microvasc Res 34:211–222

    Article  Google Scholar 

  • Lagerlund TD, Low PA (1993) Mathematical modeling of time-dependent oxygen transport in rat peripheral nerve. Comput Biol Med 23:29–47

    Article  Google Scholar 

  • Lang J (1962) On connective tissue and blood vessels of the nerves. Z Anat Entwicklungsgesch 123:61–79

    Article  Google Scholar 

  • Lang J (1964) Über die Gefässe, die Faszikel und das Bindegewebe der Nerven während des Wachstums. Z Zellforsch Mikrosk Anat 63:226–246

    Article  Google Scholar 

  • Lanzetta M, Herbert TJ, Conolly WB (1994) Silicone synovitis. A perspective. J Hand Surg Br 19:479–484

    Article  Google Scholar 

  • Lee JY, Giusti G, Friedrich PF, Bishop AT, Shin AY (2016) Effect of vascular endothelial growth factor administration on nerve regeneration after autologous nerve grafting. J Reconstr Microsurg 32:183–188

    Article  Google Scholar 

  • Lemke A, Penzenstadler C, Ferguson J, Lidinsky D, Hopf R, Bradl M, Redl H, Wolbank S, Hausner T (2017) A novel experimental rat model of peripheral nerve scarring that reliably mimics post-surgical complications and recurring adhesions. Dis Model Mech 10:1015–1025

    Google Scholar 

  • Levy D, Zochodne DW (1998) Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci 10:1846–1855

    Article  Google Scholar 

  • Li W, Kohara H, Uchida Y, James JM, Soneji K, Cronshaw DG, Zou YR, Nagasawa T, Mukouyama YS (2013) Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev Cell 24:359–371

    Article  Google Scholar 

  • Li R, Xu J, Rao Z, Deng R, Xu Y, Qiu S, Long H, Zhu Q, Liu X, Bai Y, Quan D (2020) Facilitate angiogenesis and neurogenesis by growth factors integrated decellularized matrix hydrogel. Tissue Eng Part A 27(11–12):771–787

    Google Scholar 

  • Lim TK, Shi XQ, Martin HC, Huang H, Luheshi G, Rivest S, Zhang J (2014) Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain 155:954–967

    Article  Google Scholar 

  • Lind R, Wood MB (1986) Comparison of the pattern of early revascularization of conventional versus vascularized nerve grafts in the canine. J Reconstr Microsurg 2:229–234

    Article  Google Scholar 

  • Lovati AB, D’Arrigo D, Odella S, Tos P, Geuna S, Raimondo S (2018) Nerve repair using decellularized nerve grafts in rat models a review of the literature. Front Cell Neurosci 12:427

    Article  Google Scholar 

  • Low PA, Tuck RR (1984) Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat. J Physiol 347:513–524

    Article  Google Scholar 

  • Low PA, Dyck PJ, Schmelzer JD (1980) Mammalian peripheral nerve sheath has unique responses to chronic elevations of endoneurial fluid pressure. Exp Neurol 70:300–306

    Article  Google Scholar 

  • Low PA, Lagerlund TD, McManis PG (1989) Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int Rev Neurobiol 31:355–438

    Article  Google Scholar 

  • Lowry Curley J, Moore MJ (2017) 3D neural culture in dual hydrogel systems. Methods Mol Biol 1612:225–237

    Article  Google Scholar 

  • Lundborg G (1968) Microvascular structure and function of peripheral nerves. Vital microscopic studies of the tibial nerve in the rabbit. Adv Microcirc 1:66–88

    Google Scholar 

  • Lundborg G (1970) Ischemic nerve injury. Experimental studies on intraneural microvascular pathophysiology and nerve function in a limb subjected to temporary circulatory arrest. Scand J Plast Reconstr Surg Suppl 6:3–113

    Google Scholar 

  • Lundborg G (1975) Structure and function of the intraneural microvessels as related to trauma, edema formation, and nerve function. J Bone Joint Surg Am 57:938–948

    Article  Google Scholar 

  • Lundborg G (1988) Intraneural microcirculation. Orthop Clin North Am 19:1–12

    Article  Google Scholar 

  • Lundborg G, Hansson HA (1980) Nerve regeneration through preformed pseudosynovial tubes. A preliminary report of a new experimental model for studying the regeneration and reorganization capacity of peripheral nerve tissue. J Hand Surg Am 5:35–38

    Article  Google Scholar 

  • Lundborg G, Myers R, Powell H (1983) Nerve compression injury and increased endoneurial fluid pressure: a “miniature compartment syndrome”. J Neurol Neurosurg Psychiatry 46:1119–1124

    Article  Google Scholar 

  • Luo YX, Wang TP (1992) A clinical application of artery-including silicone tubing to peripheral nerve defect. J Tongji Med Univ 12:247–249

    Article  Google Scholar 

  • Mackinnon SE, Dellon AL (1986) Experimental study of chronic nerve compression. Clinical implications. Hand Clin 2:639–650

    Article  Google Scholar 

  • Mackinnon SE, Dellon AL, Hudson AR, Hunter DA (1984) Chronic nerve compression – an experimental model in the rat. Ann Plast Surg 13:112–120

    Article  Google Scholar 

  • Madison RD, Zomorodi A, Robinson GA (2000) Netrin-1 and peripheral nerve regeneration in the adult rat. Exp Neurol 161:563–570

    Article  Google Scholar 

  • Mahan MA (2019) Nerve stretching: a history of tension. J Neurosurg 132:252–259

    Article  Google Scholar 

  • Maki Y, Breidenbach WC, Firrell JC (1993) Evaluation of a local microsphere injection method for measurement of blood flow in the rabbit lower extremity. J Orthop Res 11:20–27

    Article  Google Scholar 

  • Maki Y, Firrell JC, Breidenbach WC (1997) Blood flow in mobilized nerves: results in a rabbit sciatic nerve model. Plast Reconstr Surg 100(3):627–633

    Article  Google Scholar 

  • Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763

    Article  Google Scholar 

  • Malik RA (2014) Pathology of human diabetic neuropathy. Handb Clin Neurol 126:249–259

    Article  Google Scholar 

  • Mani GV, Shurey C, Green CJ (1992) Is early vascularization of nerve grafts necessary? J Hand Surg Br 17:536–543

    Article  Google Scholar 

  • Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28:1634–1643

    Article  Google Scholar 

  • Martin P, Lewis J (1989) Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int J Dev Biol 33:379–387

    Google Scholar 

  • Masgutov R, Zeinalova A, Bogov A, Masgutova G, Salafutdinov I, Garanina E, Syromiatnikova V, Idrisova K, Mullakhmetova A, Andreeva D, Mukhametova L, Kadyrov A, Pankov I, Rizvanov A (2021) Angiogenesis and nerve regeneration induced by local administration of plasmid pBud-coVEGF165-coFGF2 into the intact rat sciatic nerve. Neural Regen Res 16:1882–1889

    Article  Google Scholar 

  • Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P (2020) Angiogenesis in tissue engineering: as nature intended? Front Bioeng Biotechnol 8:188

    Article  Google Scholar 

  • Mathot F, Rbia N, Bishop AT, Hovius SER, Shin AY (2020a) Adipose derived mesenchymal stem cells seeded onto a decellularized nerve allograft enhances angiogenesis in a rat sciatic nerve defect model. Microsurgery 40:585–592

    Article  Google Scholar 

  • Mathot F, Rbia N, Thaler R, Bishop AT, Van Wijnen AJ, Shin AY (2020b) Gene expression profiles of differentiated and undifferentiated adipose derived mesenchymal stem cells dynamically seeded onto a processed nerve allograft. Gene 724:144151

    Article  Google Scholar 

  • Matsumoto N (1983) Experimental study on compression neuropathy – determination of blood flow by a hydrogen washout technic. Nihon Seikeigeka Gakkai Zasshi 57:805–816

    Google Scholar 

  • McCullough CJ, Gagey O, Higginson DW, Sandin BM, Crow JC, Sebille A (1984) Axon regeneration and vascularisation of nerve grafts. An experimental study. J Hand Surg Br 9:323–327

    Article  Google Scholar 

  • McManis PG, Low PA (1988) Factors affecting the relative viability of centrifascicular and subperineurial axons in acute peripheral nerve ischemia. Exp Neurol 99:84–95

    Article  Google Scholar 

  • McManis PG, Low PA, Yao JK (1986) Relationship between nerve blood flow and intercapillary distance in peripheral nerve edema. Am J Physiol 251:E92–E97

    Google Scholar 

  • Meng FW, Jing XN, Song GH, Jie LL, Shen FF (2020) Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J Anat 237:933–940

    Article  Google Scholar 

  • Merle M, Dautel G (1991) Vascularised nerve grafts. J Hand Surg Br 16:483–488

    Article  Google Scholar 

  • Merolli A, Rocchi L, catalano F, Planell J, Engel E, Martinez E, Sbernardori MC, Marceddu S, Leali PT (2009) In vivo regeneration of rat sciatic nerve in a double-halved stitch-less guide: a pilot-study. Microsurgery 29:310–318

    Article  Google Scholar 

  • Millesi H (1982) Peripheral nerve injuries. Nerve sutures and nerve grafting. Scand J Plast Reconstr Surg Suppl 19:25–37

    Google Scholar 

  • Millesi H (1992) Chirurgie der peripheren Nerven. Elsevier, München

    Google Scholar 

  • Millesi H (2000) Techniques for nerve grafting. Hand Clin 16:73–91, viii

    Article  Google Scholar 

  • Millesi H (2007) Bridging defects: autologous nerve grafts. Acta Neurochir Suppl 100:37–38

    Article  Google Scholar 

  • Millesi H, Zoch G, Rath T (1990) The gliding apparatus of peripheral nerve and its clinical significance. Ann Chir Main Memb Super 9:87–97

    Google Scholar 

  • Millesi H, Hausner T, Schmidhammer R, Trattnig S, Tschabitscher M (2007) Anatomical structures to provide passive motility of peripheral nerve trunks and fascicles. Acta Neurochir Suppl 100:133–135

    Article  Google Scholar 

  • Mizisin AP, Weerasuriya A (2011) Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 121:291–312

    Article  Google Scholar 

  • Mohammadi R, Ahsan S, Masoumi M, Amini K (2013) Vascular endothelial growth factor promotes peripheral nerve regeneration after sciatic nerve transection in rat. Chin J Traumatol 16:323–329

    Google Scholar 

  • Muangsanit P, Shipley RJ, Phillips JB (2018) Vascularization strategies for peripheral nerve tissue engineering. Anat Rec 301:1657–1667

    Article  Google Scholar 

  • Muangsanit P, Day A, Dimiou S, Ataç AF, Kayal C, Park H, Nazhat SN, Phillips JB (2020) Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J Neural Eng 17:046036

    Article  Google Scholar 

  • Muangsanit P, Roberton V, Costa E, Phillips J (2021) Engineered aligned endothelial cell structures in tethered collagen hydrogels promote peripheral nerve regeneration. Acta Biomater 126:224–237

    Article  Google Scholar 

  • Muheremu A, Chen L, Wang X, Wei Y, Gong K, Ao Q (2017) Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect. Sci Rep 7:44002

    Article  Google Scholar 

  • Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    Article  Google Scholar 

  • Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ (2005) Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132:941–952

    Article  Google Scholar 

  • Muratori L, Gnavi S, Fregnan F, Mancardi A, Raimondo S, Perroteau I, Geuna S (2018) Evaluation of vascular endothelial growth factor (VEGF) and its family member expression after peripheral nerve regeneration and denervation. Anat Rec 301:1646–1656

    Article  Google Scholar 

  • Myers RR, Murakami H, Powell HC (1986) Reduced nerve blood flow in edematous neuropathies: a biomechanical mechanism. Microvasc Res 32:145–151

    Article  Google Scholar 

  • Nishida Y, Yamada Y, Kanemaru H, Ohazama A, Maeda T, Seo K (2018) Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration. Biomed Res 39:287–294

    Article  Google Scholar 

  • Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Asp Med 23:463–483

    Article  Google Scholar 

  • Nukada H (1988) Post-traumatic endoneurial neovascularization and nerve regeneration: a morphometric study. Brain Res 449:89–96

    Article  Google Scholar 

  • Nukada H, Dyck PJ (1984) Microsphere embolization of nerve capillaries and fiber degeneration. Am J Pathol 115:275–287

    Google Scholar 

  • Nukada H, Dyck PJ (1986) Neovascularization after ischemic nerve injury. Exp Neurol 92:391–397

    Article  Google Scholar 

  • Nukada H, Dyck PJ, Karnes JL (1985) Spatial distribution of capillaries in rat nerves: correlation to ischemic damage. Exp Neurol 87:369–376

    Article  Google Scholar 

  • Nukada H, van Rij AM, Packer SG, McMorran PD (1996) Pathology of acute and chronic ischaemic neuropathy in atherosclerotic peripheral vascular disease. Brain 119(Pt 5):1449–1460

    Article  Google Scholar 

  • O’Brien JP, Mackinnon SE, MacLean AR, Hudson AR, Dellon AL, Hunter DA (1987) A model of chronic nerve compression in the rat. Ann Plast Surg 19:430–435

    Article  Google Scholar 

  • O’Rourke C, Drake RA, Cameron GW, Loughlin AJ, Phillips JB (2015) Optimising contraction and alignment of cellular collagen hydrogels to achieve reliable and consistent engineered anisotropic tissue. J Biomater Appl 30:599–607

    Article  Google Scholar 

  • O’Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L, Grace N, Cameron G, Drake RAL, Sinden J, Phillips JB (2018) An allogeneic “off the shelf” therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci Rep 8:2951

    Article  Google Scholar 

  • Ochoa J, Fowler TJ, Gilliatt RW (1972) Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J Anat 113:433–455

    Google Scholar 

  • Oh WJ, Gu C (2013) Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron 80:458–469

    Article  Google Scholar 

  • Ohana M, Moser T, Moussaouï A, Kremer S, Carlier RY, Liverneaux P, Dietemann JL (2014) Current and future imaging of the peripheral nervous system. Diagn Interv Imaging 95:17–26

    Article  Google Scholar 

  • Olsson Y, Reese TS (1971) Permeability of vasa nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J Neuropathol Exp Neurol 30:105–119

    Article  Google Scholar 

  • Oudega M, Gautier SE, Chapon P, Fragoso M, Bates ML, Parel JM, Bunge MB (2001) Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 22:1125–1136

    Article  Google Scholar 

  • Ozcan G, Shenaq S, Mirabi B, Spira M (1993a) Nerve regeneration in a bony bed: vascularized versus nonvascularized nerve grafts. Plast Reconstr Surg 91:1322–1331

    Article  Google Scholar 

  • Ozcan G, Shenaq S, Spira M (1993b) Vascularized nerve tube: an experimental alternative for vascularized nerve grafts over short gaps. J Reconstr Microsurg 9:405–413

    Article  Google Scholar 

  • Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC (2010) EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143:145–155

    Article  Google Scholar 

  • Penkert G, Bini W, Samii M (1988) Revascularization of nerve grafts: an experimental study. J Reconstr Microsurg 4:319–325

    Article  Google Scholar 

  • Penna V, Munder B, Stark GB, Lang EM (2011) An in vivo engineered nerve conduit – fabrication and experimental study in rats. Microsurgery 31:395–400

    Article  Google Scholar 

  • Pereira Lopes FR, Lisboa BC, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F, Lora S, Melo PA, Borojevic R, Han SW, Martinez AM (2011) Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol Appl Neurobiol 37:600–612

    Article  Google Scholar 

  • Petrova ES, Isaeva EN, Kolos EA, Korzhevskii DE (2018) Vascularization of the damaged nerve under the effect of experimental cell therapy. Bull Exp Biol Med 165:161–165

    Article  Google Scholar 

  • Pho RW, Lee YS, Rujiwetpongstorn V, Pang M (1985) Histological studies of vascularised nerve graft and conventional nerve graft. J Hand Surg Br 10:45–48

    Article  Google Scholar 

  • Podhajsky RJ, Myers RR (1993) The vascular response to nerve crush: relationship to Wallerian degeneration and regeneration. Brain Res 623:117–123

    Article  Google Scholar 

  • Podhajsky RJ, Myers RR (1994) The vascular response to nerve transection: neovascularization in the silicone nerve regeneration chamber. Brain Res 662:88–94

    Article  Google Scholar 

  • Poduslo JF, Curran GL (1992) Increased permeability across the blood-nerve barrier of albumin glycated in vitro and in vivo from patients with diabetic polyneuropathy. Proc Natl Acad Sci U S A 89:2218–2222

    Article  Google Scholar 

  • Poduslo JF, Curran GL, Dyck PJ (1988) Increase in albumin, IgG, and IgM blood-nerve barrier indices in human diabetic neuropathy. Proc Natl Acad Sci U S A 85:4879–4883

    Article  Google Scholar 

  • Poduslo JF, Curran GL, Berg CT (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci U S A 91(12):5705–5709

    Article  Google Scholar 

  • Poduslo JF, Curran GL, Gill JS (1998) Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J Neurochem 71:1651–1660

    Article  Google Scholar 

  • Pugliese G, Tilton RG, Speedy A, Chang K, Santarelli E, Province MA, Eades D, Sherman WR, Williamson JR (1989) Effects of very mild versus overt diabetes on vascular haemodynamics and barrier function in rats. Diabetologia 32:845–857

    Article  Google Scholar 

  • Quénu J, Lejars F (1894) Études sur la système cicrulatoire. G. Steinheil (ed.) Paris

    Google Scholar 

  • Ramos T, Ahmed M, Wieringa P, Moroni L (2015) Schwann cells promote endothelial cell migration. Cell Adhes Migr 9:441–451

    Article  Google Scholar 

  • Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223:77–85

    Article  Google Scholar 

  • Rbia N, Bulstra LF, Thaler R, Hovius SER, van Wijnen AJ, Shin AY (2019) In vivo survival of mesenchymal stromal cell-enhanced decellularized nerve grafts for segmental peripheral nerve reconstruction. J Hand Surg Am 44:514.e1–514e11

    Article  Google Scholar 

  • Rechthand E, Hervonen A, Sato S, Rapoport SI (1986) Distribution of adrenergic innervation of blood vessels in peripheral nerve. Brain Res 374:185–189

    Article  Google Scholar 

  • Rechthand E, Smith QR, Rapoport SI (1987) Transfer of nonelectrolytes from blood into peripheral nerve endoneurium. Am J Physiol Heart Circ Physiol 252(6):H1175–H1182

    Article  Google Scholar 

  • Rechthand E, Sato S, Oberg PA, Rapoport SI (1988) Sciatic nerve blood flow response to carbon dioxide. Brain Res 446:61–66

    Article  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  Google Scholar 

  • Reinhold AK, Rittner HL (2020) Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol 327:113244

    Article  Google Scholar 

  • Restrepo Y, Merle M, Michon J, Folliguet B, Barrat E (1985) Free vascularized nerve grafts: an experimental study in the rabbit. Microsurgery 6:78–84

    Article  Google Scholar 

  • Reynolds DL Jr, Jacobson JA, Inampudi P, Jamadar DA, Ebrahim FS, Hayes CW (2004) Sonographic characteristics of peripheral nerve sheath tumors. AJR Am J Roentgenol 182:741–744

    Article  Google Scholar 

  • Ritchie JM (1967) The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity. J Physiol 188:309–329

    Article  Google Scholar 

  • Ronchi G, Cillino M, Gambarotta G, Fornasari BE, Raimondo S, Pugliese P, Tos P, Cordova A, Moschella F, Geuna S (2017) Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J Neurosurg 127:843–856

    Article  Google Scholar 

  • Rose EH, Kowalski TA, Norris MS (1989) The reversed venous arterialized nerve graft in digital nerve reconstruction across scarred beds. Plast Reconstr Surg 83:593–604

    Article  Google Scholar 

  • Rouwkema J, Koopman B, Blitterswijk C, Dhert W, Malda J (2010) Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev 26:163–178

    Article  Google Scholar 

  • Rundquist I, Smith QR, Michel ME, Ask P, Oberg PA, Rapoport SI (1985) Sciatic nerve blood flow measured by laser Doppler flowmetry and [14C]iodoantipyrine. Am J Physiol 248:H311–H317

    Google Scholar 

  • Saffari TM, Badreldin A, Mathot F, Bagheri L, Bishop AT, van Wijnen AJ, Shin AY (2020a) Surgical angiogenesis modifies the cellular environment of processed nerve allografts in a rat sciatic nerve defect model. Gene 751:144711

    Article  Google Scholar 

  • Saffari TM, Bedar M, Hundepool CA, Bishop AT, Shin AY (2020b) The role of vascularization in nerve regeneration of nerve graft. Neural Regen Res 15:1573–1579

    Article  Google Scholar 

  • Saffari TM, Mathot F, Friedrich PF, Bishop AT, Shin AY (2020c) Revascularization patterns of nerve allografts in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg 73:460–468

    Article  Google Scholar 

  • Saffari TM, Mathot F, Thaler R, van Wijnen AJ, Bishop AT, Shin AY (2020d) Microcomputed analysis of nerve angioarchitecture after combined stem cell delivery and surgical angiogenesis to nerve allograft. J Plast Reconstr Aesthet Surg 74(8):1919–1930

    Article  Google Scholar 

  • Saffari S, Saffari TM, Ulrich DJO, Hovius SER, Shin AY (2021) The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res 16:1510–1517

    Article  Google Scholar 

  • Sakuma M, Gorski G, Sheu SH, Lee S, Barrett LB, Singh B, Omura T, Latremoliere A, Woolf CJ (2016) Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. Eur J Neurosci 43:451–462

    Article  Google Scholar 

  • Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J (2017) Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med 11:3362–3372

    Article  Google Scholar 

  • Saray A, Teoman Tellioglu A, Altinok G (2002) Prefabrication of a free peripheral nerve graft following implantation on an arteriovenous pedicle. J Reconstr Microsurg 18:281–288

    Article  Google Scholar 

  • Sarhane KA, Slavin BR, Hricz N, Malapati H, Guo YN, Grzelak M, Chang IA, Shappell H, von Guionneau N, Wong AL, Mi R, Höke A, Tuffaha SH (2021) Defining the relative impact of muscle versus Schwann cell denervation on functional recovery after delayed nerve repair. Exp Neurol 339:113650

    Article  Google Scholar 

  • Sarker MD, Naghieh S, McInnes AD, Schreyer DJ, Chen X (2018) Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 171:125–150

    Article  Google Scholar 

  • Saska S, Pilatti L, Blay A, Shibli JA (2021) Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers 13:563

    Article  Google Scholar 

  • Scallan JP, Hill MA, Davis MJ (2015) Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc Res 107:89–97

    Article  Google Scholar 

  • Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C (2018) VEGF triggers the activation of cofilin and the Arp2/3 complex within the growth cone. Int J Mol Sci 19:384

    Article  Google Scholar 

  • Schmelzer JD, Zochodne DW, Low PA (1989) Ischemic and reperfusion injury of rat peripheral nerve. Proc Natl Acad Sci U S A 86:1639–1642

    Article  Google Scholar 

  • Seckel BR, Ryan SE, Simons JE, Gagne RG, Watkins E Jr (1986) Vascularized versus nonvascularized nerve grafts: an experimental structural comparison. Plast Reconstr Surg 78:211–220

    Article  Google Scholar 

  • Seddon H (1975) Surgical disorders of the peripheral nerves. Churchill Livingston, Edinburgh/London

    Google Scholar 

  • Segarra M, Kirchmaier BC, Acker-Palmer A (2015) A vascular perspective on neuronal migration. Mech Dev 138(Pt 1):17–25

    Article  Google Scholar 

  • Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A (2019) Neurovascular interactions in the nervous system. Annu Rev Cell Dev Biol 35:615–635

    Article  Google Scholar 

  • Seiler JG III, Milek MA, Carpenter GK, Swiontkowski MF (1989) Intraoperative assessment of median nerve blood flow during carpal tunnel release with laser Doppler flowmetry. J Hand Surg Am 14:986–991

    Article  Google Scholar 

  • Selander D, Månsson LG, Karlsson L, Svanvik J (1985) Adrenergic vasoconstriction in peripheral nerves of the rabbit. Anesthesiology 62:6–10

    Article  Google Scholar 

  • Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM (2021) Three-dimensional engineered peripheral nerve: toward a new era of patient-specific nerve repair solutions. Tissue Eng Part B Rev. https://doi.org/10.1089/ten.TEB.2020.0355. Epub ahead of print. PMID: 33593147

  • Shafi M, Hattori Y, Doi K (2010) Surgical technique of harvesting vascularized superficial radial nerve graft. J Hand Surg Am 35:312–315

    Article  Google Scholar 

  • Shdanow D (1931) Die Lymphwege des peripherischen und Zentralnervensystems: I Die abführenden Lymphgefässe von Nervenstämmen der Extremitäten des Menschen. Anat Anz 71:231–245

    Google Scholar 

  • Shibata M, Tsai TM, Firrell J, Breidenbach WC (1988) Experimental comparison of vascularized and nonvascularized nerve grafting. J Hand Surg Am 13:358–365

    Article  Google Scholar 

  • Shupeck M, Ward KK, Schmelzer JD, Low PA (1989) Comparison of nerve regeneration in vascularized and conventional grafts: nerve electrophysiology, norepinephrine, prostacyclin, malondialdehyde, and the blood-nerve barrier. Brain Res 493:225–230

    Article  Google Scholar 

  • Sladky JT, Greenberg JH, Brown MJ (1985) Regional perfusion in normal and ischemic rat sciatic nerves. Ann Neurol 17:191–195

    Article  Google Scholar 

  • Slutsky DJ (2013) Vascularized ulnar nerve graft. In: The art of microsurgical hand reconstruction. Georg Thieme Verlag, Stuttgart

    Chapter  Google Scholar 

  • Smith DR, Kobrine AI, Rizzoli HV (1977) Absence of autoregulation in peripheral nerve blood flow. J Neurol Sci 33:347–352

    Article  Google Scholar 

  • Soman SS, Vijayavenkataraman S (2020) Perspectives on 3D bioprinting of peripheral nerve conduits. Int J Mol Sci 21:5792

    Article  Google Scholar 

  • Sommer C, Myers RR (1996) Vascular pathology in CCI neuropathy: a quantitative temporal study. Exp Neurol 141:113–119

    Article  Google Scholar 

  • Sonabend AM, Smith P, Huang JH, Winfree C (2012) Peripheral nerve injury. In: Schmidek and sweet operative neurosurgical techniques: indications, methods, and results: sixth edition, vol 2. Elsevier, Amsterdam, pp 2225–2238

    Chapter  Google Scholar 

  • Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res 846:219–228

    Article  Google Scholar 

  • Staniforth P, Fisher TR (1978) The effects of sural nerve excision in autogenous nerve grafting. Hand 10:187–190

    Article  Google Scholar 

  • Stanton-Hicks M (2018) Anatomy and physiology related to peripheral nerve stimulation. Neuromodulation 24:723–727

    Article  Google Scholar 

  • Stoll G, Wilder-Smith E, Bendszus M (2013) Imaging of the peripheral nervous system. Handb Clin Neurol 115:137–153

    Article  Google Scholar 

  • Strange FG (1947) An operation for nerve pedicle grafting; preliminary communication. Br J Surg 34:423–425

    Article  Google Scholar 

  • Stubbs D, Deproto J, Nie K, Englund C, Mahmud I, Hevner R, Molnár Z (2009) Neurovascular congruence during cerebral cortical development. Cereb Cortex 19(Suppl 1):i32–i41

    Article  Google Scholar 

  • Sunderland S (1945a) Blood supply of peripheral nerves; practical considerations. Arch Neurol Psychiatr 54:280–282

    Article  Google Scholar 

  • Sunderland S (1945b) Blood supply of the nerves of the upper limb in man. Arch Neurol Psychiatr 53:91–115

    Article  Google Scholar 

  • Sunderland S (1945c) Blood supply of the sciatic nerve and its popliteal divisions in man. Arch Neurol Psychiatr 54:283–289

    Article  Google Scholar 

  • Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74:491–516

    Article  Google Scholar 

  • Sunderland S (1965) The connective tissues of peripheral nerves. Brain 88:841–854

    Article  Google Scholar 

  • Sunderland S (1978) Nerves and nerve injuries, 2nd edn. Churchill Livingstone, Edinburg/London/New York, p 1046

    Google Scholar 

  • Sunderland S (1991) Nerve injuries and their repair: a critical appraisal. Churchill Livingstone, Edinburg/London

    Google Scholar 

  • Sweat RS, Sloas DC, Murfee WL (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21:532–540

    Article  Google Scholar 

  • Takahashi K, Nomura S, Tomita K, Matsumoto T (1988) Effects of peripheral nerve stimulation on the blood flow of the spinal cord and the nerve root. Spine 13:1278–1283

    Article  Google Scholar 

  • Takahashi Y, Sipp D, Enomoto H (2013) Tissue interactions in neural crest cell development and disease. Science 341:860–863

    Article  Google Scholar 

  • Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, Mizui M, Kang S, Nojima S, Tsujimura T, Nakatsuji Y, Katayama I, Toyofuku T, Kikutani H, Kumanogoh A (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11:594–600

    Article  Google Scholar 

  • Tarlov IM, Epstein JA (1945) Nerve grafts: the importance of an adequate blood supply. J Neurosurg 2:49–71

    Article  Google Scholar 

  • Taylor GI (1978) Nerve grafting with simultaneous microvascular reconstruction. Clin Orthop Relat Res:56–70

    Google Scholar 

  • Taylor GI, Daniel RK (1973) The free flap: composite tissue transfer by vascular anastomosis. Aust N Z J Surg 43:1–3

    Article  Google Scholar 

  • Taylor GI, Ham FJ (1976) The free vascularized nerve graft. A further experimental and clinical application of microvascular techniques. Plast Reconstr Surg 57:413–426

    Article  Google Scholar 

  • Terzis JK, Kostopoulos VK (2009) Vascularized ulnar nerve graft: 151 reconstructions for posttraumatic brachial plexus palsy. Plast Reconstr Surg 123:1276–1291

    Article  Google Scholar 

  • Terzis JK, Kostopoulos VK (2010a) Vascularized nerve grafts and vascularized fascia for upper extremity nerve reconstruction. Hand 5:19–30

    Article  Google Scholar 

  • Terzis JK, Kostopoulos VK (2010b) Vascularized nerve grafts for lower extremity nerve reconstruction. Ann Plast Surg 64:169–176

    Article  Google Scholar 

  • Terzis JK, Skoulis TG, Soucacos PN (1995) Vascularized nerve grafts. A review. Int Angiol 14:264–277

    Google Scholar 

  • Theriault M, Dort J, Sutherland G, Zochodne DW (1997) Local human sural nerve blood flow in diabetic and other polyneuropathies. Brain 120(Pt 7):1131–1138

    Article  Google Scholar 

  • Thiele FH, Embleton HD (1914) Royal Society of Medicine – Section of Pathology. Lancet 183:609–612

    Article  Google Scholar 

  • Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Aristovich K, Perkins J, Shearing PR, Holder D (2020) MicroCT optimisation for imaging fascicular anatomy in peripheral nerves. J Neurosci Methods 338:108652

    Article  Google Scholar 

  • Thomsen K, Rubin I, Lauritzen M (2000) In vivo mechanisms of acetylcholine-induced vasodilation in rat sciatic nerve. Am J Physiol Heart Circ Physiol 279:H1044–H1054

    Article  Google Scholar 

  • Tilton RG, Chang K, Nyengaard JR, Van den Enden M, Ido Y, Williamson JR (1995) Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes 44:234–242

    Article  Google Scholar 

  • Townsend PL, Taylor GI (1984) Vascularised nerve grafts using composite arterialised neuro-venous systems. Br J Plast Surg 37:1–17

    Article  Google Scholar 

  • Ubogu EE (2020) Biology of the human blood-nerve barrier in health and disease. Exp Neurol 328:113272

    Article  Google Scholar 

  • Ugrenovic SZ, Jovanovic ID, Kovacevic P, Petrović S, Simic T (2013) Similarities and dissimilarities of the blood supplies of the human sciatic, tibial, and common peroneal nerves. Clin Anat 26:875–882

    Google Scholar 

  • Vallat JM, Leboutet MJ, Loubet A, Hugon J, Moreau JJ (1988) Effects of glycerol injection into rat sciatic nerve. Muscle Nerve 11:540–545

    Article  Google Scholar 

  • Volpi N, Agliano M, Massai L, Alessandrini C, Rossi S, Pucci AM, Grasso G (2006) Lymphatic vessels in human sural nerve: immunohistochemical detection by D2-40. Lymphology 39:171–173

    Google Scholar 

  • Volpi N, Guarna M, Lorenzoni P, Franci D, Massai L, Grasso G (2013) Characterization of lymphatic vessels in human peripheral neuropathies. Ital J Anat Embryol 117(2):12

    Google Scholar 

  • Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108:25–53

    Article  Google Scholar 

  • Weddell G (1942) Axonal regeneration in cutaneous nerve plexuses. J Anat 77:49–62.3

    Google Scholar 

  • Weerasuriya A (1988) Patterns of change in endoneurial capillary permeability and vascular space during Wallerian degeneration. Brain Res 445:181–187

    Article  Google Scholar 

  • Weerasuriya A (1990) Patterns of change in endoneurial capillary permeability and vascular space during nerve regeneration. Brain Res 510:135–139

    Article  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  Google Scholar 

  • Wieghaus KA, Capitosti SM, Anderson CR, Price RJ, Blackman BR, Brown ML, Botchwey EA (2006) Small molecule inducers of angiogenesis for tissue engineering. Tissue Eng 12:1903–1913

    Article  Google Scholar 

  • Wolford LM, Stevao EL (2003) Considerations in nerve repair. Proceedings 16:152–156

    Google Scholar 

  • Wongtrakul S, Bishop AT, Friedrich PF (2002) Vascular endothelial growth factor promotion of neoangiogenesis in conventional nerve grafts. J Hand Surg Am 27:277–285

    Article  Google Scholar 

  • Wu P, Tong Z, Luo L, Zhao Y, Chen F, Li Y, Huselstein C, Ye Q, Chen Y (2021) Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair. Bioact Mater 6:3515–3527

    Article  Google Scholar 

  • Xia B, Lv Y (2018) Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl 82:253–264

    Article  Google Scholar 

  • Xu QG, Zochodne DW (2002) Ischemia and failed regeneration in chronic experimental neuromas. Brain Res 946:24–30

    Article  Google Scholar 

  • Xu Q, Midha R, Zochodne DW (2010) The microvascular impact of focal nerve trunk injury. J Neurotrauma 27:639–646

    Article  Google Scholar 

  • Yan L, Liu S, Qi J, Zhang Z, Zhong J, Li Q, Liu X, Zhu Q, Yao Z, Lu Y, Gu L (2019) Three-dimensional reconstruction of internal fascicles and microvascular structures of human peripheral nerves. Int J Numer Method Biomed Eng 35:e3245

    Article  Google Scholar 

  • Yapici AK, Bayram Y, Akgun H, Gumus R, Zor F (2017) The effect of in vivo created vascularized neurotube on peripheric nerve regeneration. Injury 48:1486–1491

    Article  Google Scholar 

  • Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X (2020) Application of stem cells in peripheral nerve regeneration. Burns Trauma 8:tkaa002

    Google Scholar 

  • Yorek MA (2015) Vascular impairment of epineurial arterioles of the sciatic nerve: implications for diabetic peripheral neuropathy. Rev Diabet Stud 12:13–28

    Article  Google Scholar 

  • Zadegan SA, Firouzi M, Nabian MH, Zanjani LO, Ashtiani AM, Kamrani RS (2015a) Two-stage nerve graft in severe scar: a time-course study in a rat model. Arch Bone Jt Surg 3:82–87

    Google Scholar 

  • Zadegan SA, Firouzi M, Nabian MH, Zanjani LO, Kamrani RS (2015b) Two-stage nerve graft using a silicone tube. Front Surg 2:12

    Article  Google Scholar 

  • Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, Cheng YB, Ren C, Geng DQ (2021a) Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res 16:2170–2176

    Article  Google Scholar 

  • Zhang Y, Kumar P, Lv S, Xiong D, Zhao H, Cai Z, Zhao X (2021b) Recent advances in 3D bioprinting of vascularized tissues. Mater Des 199:109398

    Article  Google Scholar 

  • Zhao Z, Wang Y, Peng J, Ren Z, Zhan S, Liu Y, Zhao B, Zhao Q, Zhang L, Guo Q, Xu W, Lu S (2011) Repair of nerve defect with acellular nerve graft supplemented by bone marrow stromal cells in mice. Microsurgery 31:388–394

    Article  Google Scholar 

  • Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264

    Article  Google Scholar 

  • Zochodne DW (2002) Nerve and ganglion blood flow in diabetes: an appraisal. Int Rev Neurobiol 50:161–202

    Article  Google Scholar 

  • Zochodne DW (2018) Local blood flow in peripheral nerves and their ganglia: resurrecting key ideas around its measurement and significance. Muscle Nerve 57:884–895

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1990) Endoneurial microenvironment and acute nerve crush injury in the rat sciatic nerve. Brain Res 535:43–48

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1991a) Influence of perivascular peptides on endoneurial blood flow and microvascular resistance in the sciatic nerve of the rat. J Physiol 444:615–630

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1991b) Stimulation-induced peripheral nerve hyperemia: mediation by fibers innervating vasa nervorum? Brain Res 546:113–118

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1992a) Hyperemia of injured peripheral nerve: sensitivity to CGRP antagonism. Brain Res 598:59–66

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1992b) The influence of indomethacin and guanethidine on experimental streptozotocin diabetic neuropathy. Can J Neurol Sci 19:433–441

    Article  Google Scholar 

  • Zochodne DW, Ho LT (1992c) Normal blood flow but lower oxygen tension in diabetes of young rats: microenvironment and the influence of sympathectomy. Can J Physiol Pharmacol 70:651–659

    Article  Google Scholar 

  • Zochodne DW, Low PA (1990) Adrenergic control of nerve blood flow. Exp Neurol 109:300–307

    Article  Google Scholar 

  • Zochodne DW, Nguyen C (1997) Angiogenesis at the site of neuroma formation in transected peripheral nerve. J Anat 191(Pt 1):23–30

    Article  Google Scholar 

  • Zochodne DW, Nguyen C (1999) Increased peripheral nerve microvessels in early experimental diabetic neuropathy: quantitative studies of nerve and dorsal root ganglia. J Neurol Sci 166:40–46

    Article  Google Scholar 

  • Zochodne DW, Low PA, Dyck PJ (1989) Adrenergic sympathectomy ablates unmyelinated fibers in the rat “preganglionic” cervical sympathetic trunk. Brain Res 498:221–228

    Article  Google Scholar 

  • Zochodne DW, Huang ZX, Ward KK, Low PA (1990) Guanethidine-induced adrenergic sympathectomy augments endoneurial perfusion and lowers endoneurial microvascular resistance. Brain Res 519:112–117

    Article  Google Scholar 

  • Zochodne DW, Ho LT, Gross PM (1992) Acute endoneurial ischemia induced by epineurial endothelin in the rat sciatic nerve. Am J Physiol 263:H1806–H1810

    Google Scholar 

  • Zochodne DW, Allison JA, Ho W, Ho LT, Hargreaves K, Sharkey KA (1995) Evidence for CGRP accumulation and activity in experimental neuromas. Am J Physiol 268:H584–H590

    Google Scholar 

  • Zochodne DW, Levy D, Zwiers H, Sun H, Rubin I, Cheng C, Lauritzen M (1999) Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience 91:1515–1527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosima Prahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prahm, C., Heinzel, J., Kolbenschlag, J. (2021). Blood Supply and Microcirculation of the Peripheral Nerve. In: Phillips, J., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-06217-0_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06217-0_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06217-0

  • Online ISBN: 978-3-030-06217-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics