Skip to main content

Visualization of Protein Kinase Activities in Living Cells

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

  • 1035 Accesses

Abstract

Protein kinases are key modulators of intracellular signal transduction cascades, which determine various events in neuronal cells such as replication and differentiation. For many years, protein kinases were ­analyzed mostly by biochemical methods, which could handle the cells only en masse. For a better understanding of the role of kinases in neuronal cells, one would like to know the subcellular distribution of kinase activities and to follow a particular kinase activity for a specific period in a single cell. Genetically encoded biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) and fluorescent proteins have been developed to accommodate such requirements. The method involves expression of the FRET biosensors in neuronal cells, time-lapse imaging under fluorescence microscopes, image processing, and quantification of FRET. This technique could be applicable to living organisms ranging from Caenorhabditis elegans to mouse, permitting visualization of spatio-temporal regulation of kinase activities and systemic understanding of the signaling networks in living animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  PubMed  CAS  Google Scholar 

  2. Cohen P (2000) The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci 25:596–601

    Article  PubMed  CAS  Google Scholar 

  3. Tsien RY, Miyawaki A (1998) Seeing the machinery of live cells. Science 280:1954–1955

    Article  PubMed  CAS  Google Scholar 

  4. Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    Article  PubMed  CAS  Google Scholar 

  5. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  6. Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    Article  PubMed  CAS  Google Scholar 

  7. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068

    Article  PubMed  CAS  Google Scholar 

  8. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  9. Sato M, Ueda Y, Takagi T, Umezawa Y (2003) Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5:1016–1022

    Article  PubMed  CAS  Google Scholar 

  10. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-­molecule probes in the membrane of living cells. Mol Cell Biol 22:6582–6591

    Article  PubMed  CAS  Google Scholar 

  11. Kiyokawa E, Aoki K, Nakamura T, Matsuda M (2010) Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster Resonance Energy Transfer (FRET): implications for signaling and pharmacology. Annu Rev Pharmacol Toxicol 51:337–358

    Article  Google Scholar 

  12. Terai K, Matsuda M (2006) The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J 25:3556–3564

    Article  PubMed  CAS  Google Scholar 

  13. Terai K, Matsuda M (2005) Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 6:251–255

    Article  PubMed  CAS  Google Scholar 

  14. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J Biol Chem 281:8917–8926

    Article  PubMed  CAS  Google Scholar 

  15. Yoshizaki H, Mochizuki N, Gotoh Y, Matsuda M (2007) Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol Biol Cell 18:119–128

    Article  PubMed  CAS  Google Scholar 

  16. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA 105:19264–19269

    Article  PubMed  CAS  Google Scholar 

  17. Murray AJ, Tucker SJ, Shewan DA (2009) cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J Neurosci 29:15434–15444

    Article  PubMed  CAS  Google Scholar 

  18. Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327:547–552

    Article  PubMed  CAS  Google Scholar 

  19. Allen MD, Zhang J (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348:716–721

    Article  PubMed  CAS  Google Scholar 

  20. Katoh-Semba R, Kitajima S, Yamazaki Y, Sano M (1987) Neuritic growth from a new subline of PC12 pheochromocytoma cells: cyclic AMP mimics the action of nerve growth factor. J Neurosci Res 17:36–44

    Article  PubMed  CAS  Google Scholar 

  21. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44:7085–7094

    Article  PubMed  CAS  Google Scholar 

  22. Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104:6672–6677

    Article  PubMed  CAS  Google Scholar 

  23. Aoki K, Matsuda M (2009) Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat Protoc 4:1623–1631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Zhang for the plasmids. Y. Inaoka, K. Hirano, R. Sakai, and N. Nonaka are also to be thanked for their technical assistance. We are grateful to the members of the Matsuda Laboratory for their helpful discussions. K.A. was supported by a Grant-in-Aid for Scientific Research on Priority Areas and by the JST PRESTO program. M.M. was supported by the Research Program of Innovative Cell Biology by Innovative Technology (Cell Innovation) from the Ministry of Education, Culture, Sports, and Science (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiyuki Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aoki, K., Komatsu, N., Goto, A., Matsuda, M. (2012). Visualization of Protein Kinase Activities in Living Cells. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics