Skip to main content

Bioluminescence Resonance Energy Transfer: An Emerging Tool for the Detection of Protein–Protein Interaction in Living Cells

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

In the field of proteomics, numerous advanced technologies have evolved that aim to provide the molecular data necessary for an in-depth understanding of biological processes. Protein–protein interactions (PPI) are at the heart of cellular function and a milestone yet to be achieved is the mapping of a complete human interactome. Bioluminescence resonance energy transfer (BRET) has become a popular technique to investigate PPI. As BRET enables the detection of PPI in living cells, problems associated with in vitro biochemical assays can be circumvented, thus making BRET a powerful tool for monitoring interactions of virtually all kinds of protein species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  PubMed  CAS  Google Scholar 

  2. Venkatesan K, Rual JF, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  PubMed  CAS  Google Scholar 

  3. Stumpf MP, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105:6959–6964

    Article  PubMed  CAS  Google Scholar 

  4. Hart GT, Ramani AK, and Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120

    Article  PubMed  Google Scholar 

  5. Pfleger KD, and Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174

    Article  PubMed  CAS  Google Scholar 

  6. Wu P, and Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Mercier JF, Salahpour A, Angers S et al (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931

    Article  PubMed  CAS  Google Scholar 

  8. Hamdan FF, Percherancier Y, Breton B et al (2006) Monitoring protein–protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci Chapter 5:Unit 5 23

    Google Scholar 

  9. Ayoub MA, and Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52

    Article  PubMed  CAS  Google Scholar 

  10. Xu Y, Piston DW, and Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151–156

    Article  PubMed  CAS  Google Scholar 

  11. Hamdan FF, Audet M, Garneau P et al (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475

    Article  PubMed  CAS  Google Scholar 

  12. Promega (2010) ViviRenTM Live Cell Substrate. Promega Technical Resources TM064

    Google Scholar 

  13. Promega (2009) EnduRenTM Live Cell Substrate Promega Technical Resources TM244

    Google Scholar 

  14. Bertrand L, Parent S, Caron M et al (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22:533–541

    Article  PubMed  CAS  Google Scholar 

  15. De A, Ray P, Loening AM et al (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein–protein interactions from single live cells and living animals. FASEB J 23:2702–2709

    Article  PubMed  CAS  Google Scholar 

  16. Gresch O, Engel FB, Nesic D et al (2004) New non-viral method for gene transfer into primary cells. Methods 33:151–163

    Article  PubMed  CAS  Google Scholar 

  17. Hamm A, Krott N, Breibach I et al (2002) Efficient transfection method for primary cells. Tissue Eng 8:235–245

    Article  PubMed  CAS  Google Scholar 

  18. James JR, Oliveira MI, Carmo AM et al (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  PubMed  CAS  Google Scholar 

  19. Lin H, Hutchcroft JE, Andoniou CE et al (1998) Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 273:19914–19921

    Article  PubMed  CAS  Google Scholar 

  20. Claret FX, Hibi M, Dhut S et al (1996) A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383:453–457

    Article  PubMed  CAS  Google Scholar 

  21. Filip AM, Klug J, Cayli S et al (2009) Ribosomal protein S19 interacts with macrophage migration inhibitory factor and attenuates its pro-inflammatory function. J Biol Chem 284:7977–7985

    Article  PubMed  CAS  Google Scholar 

  22. Vizoso Pinto MG, Villegas JM, Peter J et al (2009) LuMPIS – a modified luminescence-based mammalian interactome mapping pull-down assay for the investigation of protein–protein interactions encoded by GC-low ORFs. Proteomics 9:5303–5308

    Article  PubMed  CAS  Google Scholar 

  23. Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnology journal 3:311–324

    Article  PubMed  CAS  Google Scholar 

  24. Braun P, Tasan M, Dreze M et al (2009) An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 6:91–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Bavarian Genome Research Network (BayGene) and the LMUexcellent grant 42595-6 to A.C.M. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren W. Gersting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gersting, S.W., Lotz-Havla, A.S., Muntau, A.C. (2012). Bioluminescence Resonance Energy Transfer: An Emerging Tool for the Detection of Protein–Protein Interaction in Living Cells. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics