Skip to main content

Cryoelectron Microscopy of Icosahedral Virus Particles

  • Protocol
Electron Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

With the rapid progresses in both instrumentation and computing, it is increasingly straightforward and routine to determine the structures of icosahedral viruses to subnanometer resolutions (6–10 Å) by cryoelectron microscopy and image reconstruction. In this resolution range, secondary structure elements of protein subunits can be clearly discerned. Combining the three-dimensional density map and bioinformatics of the protein components, the folds of the virus capsid shell proteins can be derived. This chapter will describe the experimental and computational procedures that lead to subnanometer resolution structural determinations of icosahedral virus particles. In addition, we will describe how to extract useful structural information from the three-dimensional maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crowther, R. A., Amos, L. A., Finch, J. T., De Rosier, D. J., and Klug, A. (1970) Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226, 421–425.

    Article  CAS  PubMed  Google Scholar 

  2. Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by fourier synthesis from electron micrographs. Phil. Trans. Roy. Soc. Lond. B. 261, 221–230.

    Article  CAS  Google Scholar 

  3. Bottcher, B., Wynne, S. A., and Crowther, R. A. (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.

    Article  CAS  PubMed  Google Scholar 

  4. Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J., and Steven, A. C. (1997) Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91–94.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., and Chiu, W. (2000) Seeing the herpesvirus capsid at 8.5 Å. Science 288, 877–880.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, Z. H., Baker, M. L., Jiang, W., Dougherty, M., Jakana, J., Dong, G., Lu, G., and Chiu, W. (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat. Struct. Biol. 8, 868–873.

    Article  CAS  PubMed  Google Scholar 

  7. Chiu, W., Baker, M. L., Jiang, W., Dougherty, M., and Schmid, M. F. (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, W., Baker, M. L., Ludtke, S. J., and Chiu, W. (2001) Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  9. Chiu, W., Baker, M. L., Jiang, W., and Zhou, Z. H. (2002) Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr. Opin. Struct. Biol. 12, 263–269.

    Article  CAS  PubMed  Google Scholar 

  10. Ludtke, S. J., Baldwin, P. R., and Chiu, W. (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, W., Li, Z., Zhang, Z., Booth, C. R., Baker, M. L., and Chiu, W. (2001) Semi-automated icosahedral particle reconstruction at sub-nanometer resolution. J. Struct. Biol. 136, 214–225.

    Article  CAS  PubMed  Google Scholar 

  12. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., and Singh, R. M. (1966) Hydrogen ion buffers for biological research. Biochemistry 5, 467–477.

    Article  CAS  PubMed  Google Scholar 

  13. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984) Cryo-electron microscopy of viruses. Nature 308, 32–36.

    Article  CAS  PubMed  Google Scholar 

  14. Dubochet, J., Adrian, M., Chang, J. J., et al. (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.

    Article  CAS  PubMed  Google Scholar 

  15. Fukami, A. and Adachi, K. (1965) A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. 14, 112–118.

    CAS  Google Scholar 

  16. Jeng, T. W., Talmon, Y., and Chiu, W. (1988) Containment system for the preparation of vitrified-hydrated virus specimens. J. Electron Microsc. Tech. 8, 343–348.

    Article  CAS  PubMed  Google Scholar 

  17. Booth, C. R., Jiang, W., Baker, M. L., Zhou, Z. H., Ludtke, S. J., and Chiu, W. (2004) A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. J. Struct. Biol. 147, 116–127.

    Article  PubMed  Google Scholar 

  18. Suloway, C., Pulokas, J., Fellmann, D., et al. (2005) Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, P., Beatty, A., Milne, J. L., and Subramaniam, S. (2001) Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135, 251–261.

    Article  CAS  PubMed  Google Scholar 

  20. Lei, J. and Frank, J. (2005) Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80.

    Article  PubMed  Google Scholar 

  21. Saban, S. D., Nepomuceno, R. R., Gritton, L. D., Nemerow, G. R., and Stewart, P. L. (2005) CryoEM structure at 9 Å resolution of an adenovirus vector targeted to hematopoietic cells. J. Mol. Biol. 349, 526–537.

    Article  CAS  PubMed  Google Scholar 

  22. Ludtke, S. J., Chen, D. H., Song, J. L., Chuang, D. T., and Chiu, W. (2004) Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, W., Baker, M. L., Wu, Q., Bajaj, C., and Chiu, W. (2003) Applications of a bilateral denoising filter in biological electron microscopy. J. Struct. Biol. 144, 114–122.

    Article  PubMed  Google Scholar 

  24. Zhu, Y., Carragher, B., Glaeser, R. M., et al. (2004) Automatic particle selection: results of a comparative study. J. Struct. Biol. 145, 3–14.

    Article  CAS  PubMed  Google Scholar 

  25. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E., and Bamford, D. (2000) Local average intensity-based method for identifying spherical particles in electron micrographs. J. Struct. Biol. 131, 126–134.

    Article  CAS  PubMed  Google Scholar 

  26. Thon, F. (1971) Phase contrast electron microscopy, in Electron Microscopy in Material Sciences (Valdre, U., ed.), Academic Press, New York, pp. 571–625.

    Google Scholar 

  27. Erickson, H. P. and Klug, A. (1971) Measurement and compensation of de-focusing and aberrations by Fourier processing of electron micrographs. Phil. Trans. Roy. Soc. Lond. B. 261, 105–118.

    Article  Google Scholar 

  28. Hanszen, K. J. (1967) New knowledge on resolution and contrast in the electron microscope image. Naturwissenschaften 54, 125–133.

    Article  CAS  PubMed  Google Scholar 

  29. Saad, A., Ludtke, S. J., Jakana, J., Rixon, F. J., Tsuruta, H., and Chiu, W. (2001) Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. J. Struct. Biol. 133, 32–42.

    Article  CAS  PubMed  Google Scholar 

  30. Frank, J., Radermacher, M., Penczek, P., et al. (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199.

    Article  CAS  PubMed  Google Scholar 

  31. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R., and Schatz, M. (1996) A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.

    Article  PubMed  Google Scholar 

  32. Grigorieff, N. (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033–1046.

    Article  CAS  PubMed  Google Scholar 

  33. Baker, T. S. and Cheng, R. H. (1996) A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130.

    Article  CAS  PubMed  Google Scholar 

  34. Sorzano, C. O., Marabini, R., Velazquez-Muriel, J., et al. (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204.

    Article  CAS  PubMed  Google Scholar 

  35. Liang, Y., Ke, E. Y., and Zhou, Z. H. (2002) IMIRS: a high-resolution 3D reconstruction package integrated with a relational image database. J. Struct. Biol. 137, 292–304.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, W., Chang, J., Jakana, J., Weigele, P., King, J., and Chiu, W. (2006) Structure of Epsilon15 phage reveals organization of genome and DNA packaging/injection apparatus. Nature 439, 612–616.

    Article  CAS  PubMed  Google Scholar 

  37. Harauz, G. and van Heel, M. (1986) Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156.

    Google Scholar 

  38. van Heel, M. and Schatz, M. (2005) Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262.

    Article  PubMed  Google Scholar 

  39. Rosenthal, P. B. and Henderson, R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745.

    Article  CAS  PubMed  Google Scholar 

  40. Baker, M. L., Jiang, W., Bowman, B. R., et al. (2003) Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. J. Mol. Biol. 331, 447–456.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, W., Li, Z., Zhang, Z., Baker, M. L., Prevelige, P. E., Jr., and Chiu, W. (2003) Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol. 10, 131–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Jiang, W., Chiu, W. (2007). Cryoelectron Microscopy of Icosahedral Virus Particles. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics