Skip to main content

Transglutaminase-Mediated Conjugations

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2078))

Abstract

Microbial transglutaminase (MTGase) catalyzes site-specific transpeptidation between a primary amine within linkers and the side chain of glutamine 295 within deglycosylated chimeric, humanized, and human IgG1s, affording homogeneous antibody–drug conjugates (ADCs). This method can be empowered by mutation of asparagine 297, insertion of a glutamine-containing peptide tag, and the use of branched linkers. Such modifications facilitate the conjugation process and provide flexibility in adjusting the conjugation site and drug-to-antibody ratio (DAR). Here, we present a protocol optimized in our group for MTGase-mediated linker incorporation and subsequent click chemistry-based payload installation. Both small linear linkers and bulky branched linkers can be incorporated into the Fc moiety within various antibodies, affording homogeneous ADCs with defined DARs. Thanks to the high homogeneity, ADCs constructed using this method can be analyzed using a single-quadrupole electrospray ionization (ESI) mass spectrometer, which many laboratories own for regular analysis of small molecules and peptides. The approach presented here allows for facile and cost-effective production of various homogeneous ADCs and other antibody conjugates for research and clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J 17:339–351. https://doi.org/10.1208/s12248-014-9710-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dennler P, Fischer E, Schibli R (2015) Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4:197–224. https://doi.org/10.3390/antib4030197

    Article  CAS  Google Scholar 

  3. Tsuchikama K, An Z (2018) Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9:33–46. https://doi.org/10.1007/s13238-016-0323-0

    Article  CAS  PubMed  Google Scholar 

  4. Dan N, Setua S, Kashyap VK et al (2018) Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel) 11:32. https://doi.org/10.3390/ph11020032

    Article  CAS  Google Scholar 

  5. Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290. https://doi.org/10.1158/0008-5472.CAN-08-1776

    Article  CAS  PubMed  Google Scholar 

  6. Katz J, Janik JE, Younes A (2011) Brentuximab vedotin (SGN-35). Clin Cancer Res 17:6428–6436. https://doi.org/10.1158/1078-0432.CCR-11-0488

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal P, Bertozzi CR (2015) Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26:176–192. https://doi.org/10.1021/bc5004982

    Article  CAS  PubMed  Google Scholar 

  8. Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody-drug conjugates. Nat Chem 8:114–119. https://doi.org/10.1038/nchem.2415

    Article  CAS  PubMed  Google Scholar 

  9. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070. https://doi.org/10.1158/1078-0432.CCR-04-0789

    Article  CAS  PubMed  Google Scholar 

  10. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932. https://doi.org/10.1038/nbt.1480

    Article  CAS  PubMed  Google Scholar 

  11. van Berkel SS, van Delft FL (2018) Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discov Today Technol 30:3–10. https://doi.org/10.1016/j.ddtec.2018.09.005

    Article  PubMed  Google Scholar 

  12. Shen B-Q, Xu K, Liu L et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30:184–189. https://doi.org/10.1038/nbt.2108

    Article  CAS  PubMed  Google Scholar 

  13. Axup JY, Bajjuri KM, Ritland M et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109:16101–16106. https://doi.org/10.1073/pnas.1211023109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zimmerman ES, Heibeck TH, Gill A et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25:351–361. https://doi.org/10.1021/bc400490z

    Article  CAS  PubMed  Google Scholar 

  15. VanBrunt MP, Shanebeck K, Caldwell Z et al (2015) Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26:2249–2260. https://doi.org/10.1021/acs.bioconjchem.5b00359

    Article  CAS  PubMed  Google Scholar 

  16. Bryden F, Maruani A, Savoie H et al (2014) Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment. Bioconjug Chem 25:611–617. https://doi.org/10.1021/bc5000324

    Article  CAS  PubMed  Google Scholar 

  17. Schumacher FF, Nunes JPM, Maruani A et al (2014) Next generation maleimides enable the controlled assembly of antibody-drug conjugates via native disulfide bond bridging. Org Biomol Chem 12:7261–7269. https://doi.org/10.1039/c4ob01550a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behrens CR, Ha EH, Chinn LL et al (2015) Antibody-drug conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 12:3986–3998. https://doi.org/10.1021/acs.molpharmaceut.5b00432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maruani A, Smith MEB, Miranda E et al (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645. https://doi.org/10.1038/ncomms7645

    Article  CAS  PubMed  Google Scholar 

  20. Forte N, Chudasama V, Baker JR (2018) Homogeneous antibody-drug conjugates via site-selective disulfide bridging. Drug Discov Today Technol 30:11–20. https://doi.org/10.1016/j.ddtec.2018.09.004

    Article  PubMed  Google Scholar 

  21. Popp MW-L, Antos JM, Ploegh HL (2009) Site-specific protein labeling via sortase-mediated transpeptidation. Curr Protoc Protein Sci 56:15.3.1–15.3.9. https://doi.org/10.1002/0471140864.ps1503s56

    Article  Google Scholar 

  22. Beerli RR, Hell T, Merkel AS, Grawunder U (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10:e0131177. https://doi.org/10.1371/journal.pone.0131177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabuka D, Rush JS, deHart GW et al (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7:1052–1067. https://doi.org/10.1038/nprot.2012.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Drake PM, Albers AE, Baker J et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25:1331–1341. https://doi.org/10.1021/bc500189z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Q, Stefano JE, Manning C et al (2014) Site-specific antibody-drug conjugation through glycoengineering. Bioconjug Chem 25:510–520. https://doi.org/10.1021/bc400505q

    Article  CAS  PubMed  Google Scholar 

  26. van Geel R, Wijdeven MA, Heesbeen R et al (2015) Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody-drug conjugates. Bioconjug Chem 26:2233–2242. https://doi.org/10.1021/acs.bioconjchem.5b00224

    Article  CAS  PubMed  Google Scholar 

  27. Grünewald J, Klock HE, Cellitti SE et al (2015) Efficient preparation of site-specific antibody–drug conjugates using phosphopantetheinyl transferases. Bioconjug Chem 26:2554–2562. https://doi.org/10.1021/acs.bioconjchem.5b00558

    Article  CAS  PubMed  Google Scholar 

  28. Jeger S, Zimmermann K, Blanc A et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed 49:9995–9997. https://doi.org/10.1002/anie.201004243

    Article  CAS  Google Scholar 

  29. Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 25:569–578. https://doi.org/10.1021/bc400574z

    Article  CAS  PubMed  Google Scholar 

  30. Anami Y, Xiong W, Gui X et al (2017) Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency. Org Biomol Chem 15:5635–5642. https://doi.org/10.1039/c7ob01027c

    Article  CAS  PubMed  Google Scholar 

  31. Spycher PR, Amann CA, Wehrmüller JE et al (2017) Dual, site-specific modification of antibodies by using solid-phase immobilized microbial transglutaminase. Chembiochem 18:1923–1927. https://doi.org/10.1002/cbic.201700188

    Article  CAS  PubMed  Google Scholar 

  32. Lhospice F, Brégeon D, Belmant C et al (2015) Site-specific conjugation of monomethyl Auristatin E to Anti-CD30 Antibodies Improves Their Pharmacokinetics and Therapeutic Index in Rodent Models. Mol Pharm 12:1863–1871. https://doi.org/10.1021/mp500666j

    Article  CAS  PubMed  Google Scholar 

  33. DeVay RM, Delaria K, Zhu G et al (2017) Improved Lysosomal Trafficking Can Modulate the Potency of Antibody Drug Conjugates. Bioconjug Chem 28:1102–1114. https://doi.org/10.1021/acs.bioconjchem.7b00013

    Article  CAS  PubMed  Google Scholar 

  34. Strop P, Liu S-H, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167. https://doi.org/10.1016/j.chembiol.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  35. Dennler P, Schibli R, Fischer E (2013) Enzymatic Antibody Modification by Bacterial Transglutaminase. In: Ducry L (ed) Antibody-Drug Conjugates. Humana Press, Totowa, NJ, pp 205–215

    Chapter  Google Scholar 

  36. Gundersen MT, Keillor JW, Pelletier JN (2013) Microbial transglutaminase displays broad acyl-acceptor substrate specificity. Appl Microbiol Biotechnol 98:219–230. https://doi.org/10.1007/s00253-013-4886-x

    Article  CAS  PubMed  Google Scholar 

  37. Dennler P, Bailey LK, Spycher PR et al (2015) Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. Chembiochem 16:861–867. https://doi.org/10.1002/cbic.201500009

    Article  CAS  PubMed  Google Scholar 

  38. Anami Y, Yamazaki CM, Xiong W et al (2018) Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat Commun 9:2512. https://doi.org/10.1038/s41467-018-04982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winkler R (2010) ESIprot: a universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data. Rapid Commun Mass Spectrom 24:285–294. https://doi.org/10.1002/rcm.4384

    Article  CAS  PubMed  Google Scholar 

  40. Miyakawa S, Nomura Y, Sakamoto T et al (2008) Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 14:1154–1163. https://doi.org/10.1261/rna.1005808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Aiko Yamaguchi for her constructive input and Dr. Georgina T. Salazar for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoji Tsuchikama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anami, Y., Tsuchikama, K. (2020). Transglutaminase-Mediated Conjugations. In: Tumey, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 2078. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9929-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9929-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9928-6

  • Online ISBN: 978-1-4939-9929-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics