Skip to main content

Vesicle- and Hepatocyte-Based Assays for Identification of Drug Candidates Inhibiting BSEP Function

  • Protocol
  • First Online:
Experimental Cholestasis Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1981))

Abstract

Transporters play a crucial role in the uptake of endo- and exogenous molecules in hepatocytes and efflux into the bile. The bile salt export pump (BSEP; ABCB11) is of major importance for efflux of bile salts to the bile and BSEP inhibition frequently provokes drug-induced cholestasis. This chapter describes two assays to determine inhibition of BSEP-mediated bile salt excretion. The first assay uses inside-out membrane vesicles, prepared from BSEP-transfected cell lines. The cholestasis potential of compounds can be determined by specifically investigating the ability to inhibit BSEP-mediated uptake of tauro-nor-THCA-24-DBD, a fluorescent bile salt derivative. For the second assay, relative accumulation of tauro-nor-THCA-24-DBD in sandwich-cultured hepatocytes, which represents a more biorelevant in vitro system, is investigated. Through incubation with standard or Ca2+/Mg2+-free buffer, the substrate signal can be determined in the cells and bile or the cells alone, respectively. Performing this assay in the presence and absence of potentially interfering compounds of interest enables exploration of the relative effect of these compounds on biliary excretion of the probe substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50:2340–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pauli-Magnus C, Meier PJ (2005) Hepatocellular transporters and cholestasis. J Clin Gastroenterol 39:S103–S110

    Article  PubMed  Google Scholar 

  3. Slijepcevic D, Roscam Abbing RLP, Katafuchi T et al (2017) Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 66:1631–1643

    Article  CAS  PubMed  Google Scholar 

  4. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661

    Article  CAS  PubMed  Google Scholar 

  5. Stieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflugers Arch 453:611–620

    Article  CAS  PubMed  Google Scholar 

  6. Perez M-J, Briz O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15:1677–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stieger B (2010) Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 42:437–445

    Article  CAS  PubMed  Google Scholar 

  8. Kubitz R, Dröge C, Kluge S et al (2014) Genetic variations of bile salt transporters. Drug Discov Today Technol 12:e55–e67

    Article  PubMed  Google Scholar 

  9. Jansen PL, Strautnieks SS, Jacquemin E et al (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370–1379

    Article  CAS  PubMed  Google Scholar 

  10. Dawson S, Stahl S, Paul N et al (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40:130–138

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Y, Woolf TF, Gan J et al (2016) In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: a review. Chem Biol Interact 255:23–30

    Article  CAS  PubMed  Google Scholar 

  12. Doige CA, Sharom FJ (1992) Transport properties of P-glycoprotein in plasma membrane vesicles from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta 1109:161–171

    Article  CAS  PubMed  Google Scholar 

  13. Tabas LB, Dantzig AH (2002) A high-throughput assay for measurement of multidrug resistance protein-mediated transport of leukotriene C4 into membrane vesicles. Anal Biochem 310:61–66

    Article  CAS  PubMed  Google Scholar 

  14. Karlsson JE, Heddle C, Rozkov A et al (2010) High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. Drug Metab Dispos 38:705–714

    Article  CAS  PubMed  Google Scholar 

  15. van Staden CJ, Morgan RE, Ramachandran B et al (2012) Membrane vesicle ABC transporter assays for drug safety assessment. Curr Protoc Toxicol Chapter 23:Unit 23.5

    Google Scholar 

  16. Kis E, Ioja E, Nagy T et al (2009) Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos 37:1878–1886

    Article  CAS  PubMed  Google Scholar 

  17. Berg JM, Tymoczko JL, Stryer L (2002) Enzymes can be inhibited by specific molecules. W H Freeman, New York, NY

    Google Scholar 

  18. Yamaguchi K, Murai T, Yabuuchi H et al (2010) Measurement of bile salt export pump transport activities using a fluorescent bile acid derivative. Drug Metab Pharmacokinet 25:214–219

    Article  CAS  PubMed  Google Scholar 

  19. De Bruyn T, Sempels W, Snoeys J et al (2014) Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. J Pharm Sci 103:1872–1881

    Article  PubMed  Google Scholar 

  20. Breeuwer P, Drocourt JL, Bunschoten N et al (1995) Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61:1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oorts M, Richert L, Annaert P (2015) Drug-induced cholestasis detection in cryopreserved rat hepatocytes in sandwich culture. J Pharmacol Toxicol Methods 73:63–71

    Article  CAS  PubMed  Google Scholar 

  22. Swift B, Pfeifer ND, Brouwer KLR (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Bruyn T, Chatterjee S, Fattah S et al (2013) Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 9:589–616

    Article  PubMed  Google Scholar 

  24. Holmstock N, Oorts M, Snoeys J et al (2018) MRP2 inhibition by HIV protease inhibitors in rat and human hepatocytes: a quantitative confocal microscopy study. Drug Metab Dispos 46:697–703

    Article  CAS  PubMed  Google Scholar 

  25. Keemink J, Oorts M, Annaert P (2015) Primary hepatocytes in sandwich culture. Methods Mol Biol 1250:175–188

    Article  CAS  PubMed  Google Scholar 

  26. Herédi-Szabó K, Palm JE, Andersson TB et al (2013) A P-gp vesicular transport inhibition assay - optimization and validation for drug-drug interaction testing. Eur J Pharm Sci 49:773–781

    Article  PubMed  Google Scholar 

  27. Pál A, Méhn D, Molnár E et al (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther 321:1085–1094

    Article  PubMed  Google Scholar 

  28. Bodo A, Bakos E, Szeri F et al (2003) Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. J Biol Chem 278:23529–23537

    Article  CAS  PubMed  Google Scholar 

  29. Zelcer N, Huisman MT, Reid G et al (2003) Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem 278:23538–23544

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen JM, Matsson P, Bergström CAS et al (2008) Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem 51:3275–3287

    Article  CAS  PubMed  Google Scholar 

  31. Hooiveld GJEJ, Heegsma J, van Montfoort JE et al (2002) Stereoselective transport of hydrophilic quaternary drugs by human MDR1 and rat Mdr1b P-glycoproteins. Br J Pharmacol 135:1685–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heredi-Szabo K, Kis E, Molnar E et al (2008) Characterization of 5(6)-carboxy-2′,7′-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J Biomol Screen 13:295–301

    Article  CAS  PubMed  Google Scholar 

  33. Deng F, Sjöstedt N, Kidron H (2016) The effect of albumin on MRP2 and BCRP in the vesicular transport assay. PLoS One 11:e0163886

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by FWO (grant G089515N). We would like to thank the employees of SOLVO biotechnology for teaching us the tips and tricks of the membrane vesicle assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Annaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Brantegem, P., Deferm, N., Qi, B., De Vocht, T., Annaert, P. (2019). Vesicle- and Hepatocyte-Based Assays for Identification of Drug Candidates Inhibiting BSEP Function. In: Vinken, M. (eds) Experimental Cholestasis Research. Methods in Molecular Biology, vol 1981. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9420-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9420-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9419-9

  • Online ISBN: 978-1-4939-9420-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics