Skip to main content

Proteases: Pivot Points in Functional Proteomics

  • Protocol
  • First Online:
Functional Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1871))

Abstract

Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. “Proteases: Pivot Points in Functional Proteomics” examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, “Proteases: Pivot Points …” closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fruton JS (2002) A history of pepsin and related enzymes. Q Rev Biol 77(2):127–147

    Article  CAS  PubMed  Google Scholar 

  2. Northrop JH, Kunitz M, Herriott RM (1938) Crystalline enzymes. Columbia Univ. Press, New York

    Google Scholar 

  3. Neurath H (1999) Proteolytic enzymes, past and future. Proc Natl Acad Sci U S A 96(20):10962–10963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44(D1):D343–D350. https://doi.org/10.1093/nar/gkv1118

    Article  CAS  PubMed  Google Scholar 

  5. Kappelhoff R, Puente XS, Wilson CH, Seth A, Lopez-Otin C, Overall CM (2017) Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP DNA microarray. Biochim Biophys Acta 1864(11 Pt B):2210–2219. https://doi.org/10.1016/j.bbamcr.2017.08.004

    Article  CAS  Google Scholar 

  6. Perez-Silva JG, Espanol Y, Velasco G, Quesada V (2016) The Degradome database: expanding roles of mammalian proteases in life and disease. Nucleic Acids Res 44(D1):D351–D355. https://doi.org/10.1093/nar/gkv1201

    Article  CAS  PubMed  Google Scholar 

  7. Rawlings ND, Salvesen G (2013) Handbook of proteolytic enzymes, 3rd edn. Elsevier/AP, Amsterdam

    Google Scholar 

  8. Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643. https://doi.org/10.1038/emboj.2012.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gettins PG, Olson ST (2016) Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 473(15):2273–2293. https://doi.org/10.1042/BCJ20160014

    Article  CAS  PubMed  Google Scholar 

  10. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626. https://doi.org/10.1146/annurev.bi.49.070180.003113

    Article  CAS  PubMed  Google Scholar 

  11. Fortelny N, Cox JH, Kappelhoff R, Starr AE, Lange PF, Pavlidis P, Overall CM (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12(5):e1001869. https://doi.org/10.1371/journal.pbio.1001869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21(7):267–271

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437. https://doi.org/10.1074/jbc.R800035200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakraborti S, Chakraborti T, Dhalla NS (eds) (2017) Proteases in human diseases. Springer Singapore, New York

    Google Scholar 

  15. Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  CAS  PubMed  Google Scholar 

  16. Gailani D, Broze GJ Jr (1993) Factor XI activation by thrombin and factor XIa. Semin Thromb Hemost 19(4):396–404. https://doi.org/10.1055/s-2007-993291

    Article  CAS  PubMed  Google Scholar 

  17. Gailani D, Renne T (2007) Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 27(12):2507–2513. https://doi.org/10.1161/ATVBAHA.107.155952

    Article  CAS  PubMed  Google Scholar 

  18. Gailani D, Renne T (2007) The intrinsic pathway of coagulation: a target for treating thromboembolic disease? J Thromb Haemost 5(6):1106–1112. https://doi.org/10.1111/j.1538-7836.2007.02446.x

    Article  CAS  PubMed  Google Scholar 

  19. Nesheim M, Bajzar L (2005) The discovery of TAFI. J Thromb Haemost 3(10):2139–2146. https://doi.org/10.1111/j.1538-7836.2005.01280.x

    Article  CAS  PubMed  Google Scholar 

  20. Bode W (2006) The structure of thrombin: a janus-headed proteinase. Semin Thromb Hemost 32(Suppl 1):16–31. https://doi.org/10.1055/s-2006-939551

    Article  CAS  PubMed  Google Scholar 

  21. Huntington JA (2008) How Na+ activates thrombin—a review of the functional and structural data. Biol Chem 389(8):1025–1035. https://doi.org/10.1515/BC.2008.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Cera E (2007) Thrombin as procoagulant and anticoagulant. J Thromb Haemost 5(Suppl 1):196–202. https://doi.org/10.1111/j.1538-7836.2007.02485.x

    Article  CAS  PubMed  Google Scholar 

  23. Trouw LA, Pickering MC, Blom AM (2017) The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 13(9):538–547. https://doi.org/10.1038/nrrheum.2017.125

    Article  CAS  PubMed  Google Scholar 

  24. Sim RB, Laich A (2000) Serine proteases of the complement system. Biochem Soc Trans 28(5):545–550

    Article  CAS  PubMed  Google Scholar 

  25. Cooper NR, Muller-Eberhard HJ (1970) The reaction mechanism of human C5 in immune hemolysis. J Exp Med 132(4):775–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dobo J, Szakacs D, Oroszlan G, Kortvely E, Kiss B, Boros E, Szasz R, Zavodszky P, Gal P, Pal G (2016) MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Sci Rep-UK 6. https://doi.org/10.1038/srep31877

  27. Sciascia S, Radin M, Yazdany J, Tektonidou M, Cecchi I, Roccatello D, Dall'Era M (2017) Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int 37(8):1249–1255. https://doi.org/10.1007/s00296-017-3686-5

    Article  CAS  PubMed  Google Scholar 

  28. de Koning PJ, Kummer JA, de Poot SA, Quadir R, Broekhuizen R, McGettrick AF, Higgins WJ, Devreese B, Worrall DM, Bovenschen N (2011) Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS One 6(8):e22645. https://doi.org/10.1371/journal.pone.0022645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soriano C, Mukaro V, Hodge G, Ahern J, Holmes M, Jersmann H, Moffat D, Meredith D, Jurisevic C, Reynolds PN, Hodge S (2012) Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer 77(1):38–45. https://doi.org/10.1016/j.lungcan.2012.01.017

    Article  PubMed  Google Scholar 

  30. Biancheri P, Di Sabatino A, Corazza GR, MacDonald TT (2013) Proteases and the gut barrier. Cell Tissue Res 351(2):269–280. https://doi.org/10.1007/s00441-012-1390-z

    Article  CAS  PubMed  Google Scholar 

  31. Ehlers MR (2014) Immune-modulating effects of alpha-1 antitrypsin. Biol Chem 395(10):1187–1193. https://doi.org/10.1515/hsz-2014-0161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boya P (2012) Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 17(5):766–774. https://doi.org/10.1089/ars.2011.4405

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843(1):13–25. https://doi.org/10.1016/j.bbamcr.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg AL (2005) Nobel committee tags ubiquitin for distinction. Neuron 45(3):339–344. https://doi.org/10.1016/j.neuron.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85(1):12–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4(7):393–402. https://doi.org/10.1038/ncpgasthep0846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alloy AP, Kayode O, Wang RY, Hockla A, Soares AS, Radisky ES (2015) Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates. J Biol Chem 290(35):21523–21535. https://doi.org/10.1074/jbc.M115.662429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giebeler N, Zigrino P (2016) A disintegrin and metalloprotease (ADAM): historical overview of their functions. Toxins (Basel) 8(4):122. https://doi.org/10.3390/toxins8040122

    Article  CAS  Google Scholar 

  39. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803(1):39–54. https://doi.org/10.1016/j.bbamcr.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  40. Freitas-Rodriguez S, Folgueras AR, Lopez-Otin C (2017) The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim Biophys Acta 1864(11 Pt A):2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007

    Article  CAS  Google Scholar 

  41. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803(1):55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3(8):1800–1814. https://doi.org/10.1111/j.1538-7836.2005.01377.x

    Article  CAS  PubMed  Google Scholar 

  43. Fender AC, Rauch BH, Geisler T, Schror K (2017) Protease-activated receptor par-4: an inducible switch between thrombosis and vascular inflammation? Thromb Haemost 117(11):2013–2025. https://doi.org/10.1160/TH17-03-0219

    Article  PubMed  Google Scholar 

  44. Takamori N, Azuma H, Kato M, Hashizume S, Aihara K, Akaike M, Tamura K, Matsumoto T (2004) High plasma heparin cofactor II activity is associated with reduced incidence of in-stent restenosis after percutaneous coronary intervention. Circulation 109(4):481–486. https://doi.org/10.1161/01.CIR.0000109695.39671.37

    Article  CAS  PubMed  Google Scholar 

  45. Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362. https://doi.org/10.1016/j.ccr.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  46. Asanuma K, Wakabayashi H, Okamoto T, Asanuma Y, Akita N, Yoshikawa T, Hayashi T, Matsumine A, Uchida A, Sudo A (2013) The thrombin inhibitor, argatroban, inhibits breast cancer metastasis to bone. Breast Cancer 20(3):241–246. https://doi.org/10.1007/s12282-012-0334-5

    Article  PubMed  Google Scholar 

  47. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. https://doi.org/10.1101/cshperspect.a008656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  49. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6(7):644–651. https://doi.org/10.1038/sj.cdd.4400536

    Article  CAS  PubMed  Google Scholar 

  50. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q (2017) Caspase-9: structure, mechanisms and clinical application. Oncotarget 8(14):23996–24008. https://doi.org/10.18632/oncotarget.15098

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW, Chalfant CE (2013) hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem 288(12):8575–8584. https://doi.org/10.1074/jbc.M112.443333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32(2):121–124

    Article  CAS  PubMed  Google Scholar 

  53. Blasche S, Mortl M, Steuber H, Siszler G, Nisa S, Schwarz F, Lavrik I, Gronewold TM, Maskos K, Donnenberg MS, Ullmann D, Uetz P, Kogl M (2013) The E. coli effector protein NleF is a caspase inhibitor. PLoS One 8(3):e58937. https://doi.org/10.1371/journal.pone.0058937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li P, Nijhawan D, Wang X (2004) Mitochondrial activation of apoptosis. Cell 116(2 Suppl):S57–59, 52 p following S59

    Article  CAS  PubMed  Google Scholar 

  55. Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS (2007) Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 405(1):11–19. https://doi.org/10.1042/BJ20070288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35(12):631–640. https://doi.org/10.1016/j.it.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  57. Wang XJ, Cao Q, Liu X, Wang KT, Mi W, Zhang Y, Li LF, LeBlanc AC, Su XD (2010) Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep 11(11):841–847. https://doi.org/10.1038/embor.2010.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34(12):646–656. https://doi.org/10.1016/j.tins.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  59. Bartel A, Gohler A, Hopf V, Breitbach K (2017) Caspase-6 mediates resistance against Burkholderia pseudomallei infection and influences the expression of detrimental cytokines. PLoS One 12(7):e0180203. https://doi.org/10.1371/journal.pone.0180203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD (2014) Caspase-1: the inflammasome and beyond. Innate Immun 20(2):115–125. https://doi.org/10.1177/1753425913484374

    Article  CAS  PubMed  Google Scholar 

  61. Duclos C, Lavoie C, Denault JB (2017) Caspases rule the intracellular trafficking cartel. FEBS J 284(10):1394–1420. https://doi.org/10.1111/febs.14071

    Article  CAS  PubMed  Google Scholar 

  62. Julien O, Wells JA (2017) Caspases and their substrates. Cell Death Differ 24(8):1380–1389. https://doi.org/10.1038/cdd.2017.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aziz M, Jacob A, Wang P (2014) Revisiting caspases in sepsis. Cell Death Dis 5:e1526. https://doi.org/10.1038/cddis.2014.488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pemberton CJ (2014) Signal peptides: new markers in cardiovascular disease? Biomark Med 8(8):1013–1019. https://doi.org/10.2217/bmm.14.64

    Article  CAS  PubMed  Google Scholar 

  65. Morocz M, Zsigmond E, Toth R, Enyedi MZ, Pinter L, Haracska L (2017) DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA. Nucleic Acids Res 45(6):3172–3188. https://doi.org/10.1093/nar/gkw1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stingele J, Habermann B, Jentsch S (2015) DNA-protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem Sci 40(2):67–71. https://doi.org/10.1016/j.tibs.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  67. Vaz B, Popovic M, Newman JA, Fielden J, Aitkenhead H, Halder S, Singh AN, Vendrell I, Fischer R, Torrecilla I, Drobnitzky N, Freire R, Amor DJ, Lockhart PJ, Kessler BM, McKenna GW, Gileadi O, Ramadan K (2016) Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair. Mol Cell 64(4):704–719. https://doi.org/10.1016/j.molcel.2016.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maskey RS, Flatten KS, Sieben CJ, Peterson KL, Baker DJ, Nam HJ, Kim MS, Smyrk TC, Kojima Y, Machida Y, Santiago A, van Deursen JM, Kaufmann SH, Machida YJ (2017) Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Res 45(8):4564–4576. https://doi.org/10.1093/nar/gkx107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Butler LR, Densham RM, Jia J, Garvin AJ, Stone HR, Shah V, Weekes D, Festy F, Beesley J, Morris JR (2012) The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J 31(19):3918–3934. https://doi.org/10.1038/emboj.2012.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pinto-Fernandez A, Kessler BM (2016) DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front Genet 7:133. https://doi.org/10.3389/fgene.2016.00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50

    Article  CAS  PubMed  Google Scholar 

  72. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK (2012) Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta 1823(1):56–66. https://doi.org/10.1016/j.bbamcr.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  73. Mao PL, Jiang Y, Wee BY, Porter AG (1998) Activation of caspase-1 in the nucleus requires nuclear translocation of pro-caspase-1 mediated by its prodomain. J Biol Chem 273(37):23621–23624

    Article  CAS  PubMed  Google Scholar 

  74. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 280(2):857–860. https://doi.org/10.1074/jbc.C400538200

    Article  CAS  PubMed  Google Scholar 

  75. Hill JW, Poddar R, Thompson JF, Rosenberg GA, Yang Y (2012) Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons. Neuroscience 220:277–290. https://doi.org/10.1016/j.neuroscience.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  76. Eguchi T, Calderwood SK, Takigawa M, Kubota S, Kozaki KI (2017) Intracellular MMP3 promotes HSP gene expression in collaboration with chromobox proteins. J Cell Biochem 118(1):43–51. https://doi.org/10.1002/jcb.25607

    Article  CAS  PubMed  Google Scholar 

  77. Stepanova V, Jayaraman PS, Zaitsev SV, Lebedeva T, Bdeir K, Kershaw R, Holman KR, Parfyonova YV, Semina EV, Beloglazova IB, Tkachuk VA, Cines DB (2016) Urokinase-type plasminogen activator (uPA) promotes angiogenesis by attenuating proline-rich homeodomain protein (PRH) transcription factor activity and de-repressing vascular endothelial growth factor (VEGF) receptor expression. J Biol Chem 291(29):15029–15045. https://doi.org/10.1074/jbc.M115.678490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Antalis TM, Bugge TH, Wu Q (2011) Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci 99:1–50. https://doi.org/10.1016/B978-0-12-385504-6.00001-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Friis S, Sales KU, Schafer JM, Vogel LK, Kataoka H, Bugge TH (2014) The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin. J Biol Chem 289(32):22319–22332. https://doi.org/10.1074/jbc.M114.574400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bardou O, Menou A, Francois C, Duitman JW, von der Thusen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Konigshoff M, Crestani B, Borensztajn KS (2016) Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis. Am J Respir Crit Care Med 193(8):847–860. https://doi.org/10.1164/rccm.201502-0299OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Le Gall SM, Szabo R, Lee M, Kirchhofer D, Craik CS, Bugge TH, Camerer E (2016) Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood 127(25):3260–3269. https://doi.org/10.1182/blood-2015-11-683110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Verhelst SHL (2017) Intramembrane proteases as drug targets. FEBS J 284(10):1489–1502. https://doi.org/10.1111/febs.13979

    Article  CAS  PubMed  Google Scholar 

  83. Dusterhoft S, Kunzel U, Freeman M (2017) Rhomboid proteases in human disease: Mechanisms and future prospects. Biochim Biophys Acta 1864(11 Pt B):2200–2209. https://doi.org/10.1016/j.bbamcr.2017.04.016

    Article  CAS  Google Scholar 

  84. Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS, Zahedi RP, Kruger M, Langer T (2017) PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol 19(4):318–328. https://doi.org/10.1038/ncb3488

    Article  CAS  PubMed  Google Scholar 

  85. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351. https://doi.org/10.1038/nrc3035

    Article  CAS  PubMed  Google Scholar 

  86. Chauhan S, Mandal P, Tomar RS (2016) Biochemical analysis reveals the multifactorial mechanism of histone H3 clipping by chicken liver histone H3 protease. Biochemistry 55(38):5464–5482. https://doi.org/10.1021/acs.biochem.6b00625

    Article  CAS  PubMed  Google Scholar 

  87. Vossaert L, Meert P, Scheerlinck E, Glibert P, Van Roy N, Heindryckx B, De Sutter P, Dhaenens M, Deforce D (2014) Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Res 13(1):123–134. https://doi.org/10.1016/j.scr.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  88. Deraison C, Bonnart C, Vergnolle N (2018) Proteases. In: Cavaillon J-M, Singer M (eds) Inflammation: from molecular and cellular mechanisms to the clinic. Wiley-VCH, Weinheim, Germany, pp 727–766

    Google Scholar 

  89. Chotirmall SH, Al-Alawi M, McEnery T, McElvaney NG (2015) Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: safety, tolerability, and patient outcomes. Ther Clin Risk Manag 11:143–151. https://doi.org/10.2147/TCRM.S51474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Torres-Duran M, Ruano-Ravina A, Parente-Lamelas I, Abal-Arca J, Leiro-Fernandez V, Montero-Martinez C, Pena C, Castro-Anon O, Golpe-Gomez A, Gonzalez-Barcala FJ, Martinez C, Guzman-Taveras R, Provencio M, Mejuto-Marti MJ, Fernandez-Villar A, Barros-Dios JM (2015) Alpha-1 antitrypsin deficiency and lung cancer risk: a case-control study in never-smokers. J Thorac Oncol 10(9):1279–1284. https://doi.org/10.1097/JTO.0000000000000609

    Article  CAS  PubMed  Google Scholar 

  91. Soderberg D, Segelmark M (2016) Neutrophil extracellular traps in ANCA-associated vasculitis. Front Immunol 7:256. https://doi.org/10.3389/fimmu.2016.00256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Denadai-Souza A, Ribeiro CM, Rolland C, Thouard A, Deraison C, Scavone C, Gonzalez-Dunia D, Vergnolle N, Avellar MCW (2017) Effect of tryptase inhibition on joint inflammation: a pharmacological and lentivirus-mediated gene transfer study. Arthritis Res Ther 19. https://doi.org/10.1186/s13075-017-1326-9

  93. Leskinen MJ, Lindstedt KA, Wang Y, Kovanen PT (2003) Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol 23(2):238–243

    Article  CAS  PubMed  Google Scholar 

  94. He A, Shi GP (2013) Mast cell chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr Pharm Des 19(6):1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation—from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151. https://doi.org/10.3109/08916934.2015.1027815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sendler M, Maertin S, John D, Persike M, Weiss FU, Kruger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM (2016) Cathepsin B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J Biol Chem 291(28):14717–14731. https://doi.org/10.1074/jbc.M116.718999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kayode O, Huang Z, Soares AS, Caulfield TR, Dong Z, Bode AM, Radisky ES (2017) Small molecule inhibitors of mesotrypsin from a structure-based docking screen. PLoS One 12(5):e0176694. https://doi.org/10.1371/journal.pone.0176694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO, Desormeaux C, Cenac N, Motta JP, Larauche M, Tache Y, Berghe PV, Neunlist M, Coron E, Kirzin S, Portier G, Bonnet D, Alric L, Vanner S, Deraison C, Vergnolle N (2017) Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66(10):1767–1778. https://doi.org/10.1136/gutjnl-2016-312094

    Article  PubMed  Google Scholar 

  99. Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190(8):3831–3838. https://doi.org/10.4049/jimmunol.1203487

    Article  CAS  PubMed  Google Scholar 

  100. Hua Y, Nair S (2015) Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta 1852(2):195–208. https://doi.org/10.1016/j.bbadis.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  101. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S, Huber R, Bode W, Bock PE (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425(6957):535–539. https://doi.org/10.1038/nature01962

    Article  CAS  PubMed  Google Scholar 

  102. Weidmann H, Heikaus L, Long AT, Naudin C, Schluter H, Renne T (2017) The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim Biophys Acta 1864(11 Pt B):2118–2127. https://doi.org/10.1016/j.bbamcr.2017.07.009

    Article  CAS  Google Scholar 

  103. Zamolodchikov D, Renne T, Strickland S (2016) The Alzheimer’s disease peptide beta-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost 14(5):995–1007. https://doi.org/10.1111/jth.13209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Esmon CT, Vigano-D'Angelo S, D'Angelo A, Comp PC (1987) Anticoagulation proteins C and S. Adv Exp Med Biol 214:47–54

    CAS  PubMed  Google Scholar 

  105. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369(6475):64–67. https://doi.org/10.1038/369064a0

    Article  CAS  PubMed  Google Scholar 

  106. Kujovich JL (1993) Factor V Leiden thrombophilia. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle, WA

    Google Scholar 

  107. Lane D Antithrombin mutation database

    Google Scholar 

  108. Verhamme IM, Olson ST, Tollefsen DM, Bock PE (2002) Binding of exosite ligands to human thrombin. Re-evaluation of allosteric linkage between thrombin exosites I and II. J Biol Chem 277(9):6788–6798. https://doi.org/10.1074/jbc.M110257200

    Article  CAS  PubMed  Google Scholar 

  109. Sarilla S, Habib SY, Kravtsov DV, Matafonov A, Gailani D, Verhamme IM (2010) Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II. J Biol Chem 285(11):8278–8289. https://doi.org/10.1074/jbc.M109.005967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Raghuraman A, Mosier PD, Desai UR (2010) Understanding dermatan sulfate-heparin cofactor II interaction through virtual library screening. ACS Med Chem Lett 1(6):281–285. https://doi.org/10.1021/ml100048y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tollefsen DM, Maimone MM, McGuire EA, Peacock ME (1989) Heparin cofactor II activation by dermatan sulfate. Ann N Y Acad Sci 556:116–122

    Article  CAS  PubMed  Google Scholar 

  112. Aihara K, Azuma H, Takamori N, Kanagawa Y, Akaike M, Fujimura M, Yoshida T, Hashizume S, Kato M, Yamaguchi H, Kato S, Ikeda Y, Arase T, Kondo A, Matsumoto T (2004) Heparin cofactor II is a novel protective factor against carotid atherosclerosis in elderly individuals. Circulation 109(22):2761–2765. https://doi.org/10.1161/01.CIR.0000129968.46095.F3

    Article  CAS  PubMed  Google Scholar 

  113. Polderdijk SG, Adams TE, Ivanciu L, Camire RM, Baglin TP, Huntington JA (2017) Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood 129(1):105–113. https://doi.org/10.1182/blood-2016-05-718635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Panizzi P, Boxrud PD, Verhamme IM, Bock PE (2006) Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. J Biol Chem 281(37):26774–26778. https://doi.org/10.1074/jbc.C600171200

    Article  CAS  PubMed  Google Scholar 

  115. Verhamme IM, Bock PE (2008) Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation. J Biol Chem 283(38):26137–26147. https://doi.org/10.1074/jbc.M804038200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Verhamme IM, Bock PE (2014) Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. J Biol Chem 289(40):28006–28018. https://doi.org/10.1074/jbc.M114.589077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weiss D, Sorescu D, Taylor WR (2001) Angiotensin II and atherosclerosis. Am J Cardiol 87(8A):25C–32C

    Article  CAS  PubMed  Google Scholar 

  118. Kossmann S, Lagrange J, Jackel S, Jurk K, Ehlken M, Schonfelder T, Weihert Y, Knorr M, Brandt M, Xia N, Li H, Daiber A, Oelze M, Reinhardt C, Lackner K, Gruber A, Monia B, Karbach SH, Walter U, Ruggeri ZM, Renne T, Ruf W, Munzel T, Wenzel P (2017) Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 9(375). https://doi.org/10.1126/scitranslmed.aah4923

    Article  PubMed  Google Scholar 

  119. Camare C, Pucelle M, Negre-Salvayre A, Salvayre R (2017) Angiogenesis in the atherosclerotic plaque. Redox Biol 12:18–34. https://doi.org/10.1016/j.redox.2017.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wilson WRW, Anderton M, Choke EC, Dawson J, Loftus IM, Thompson MM (2008) Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc 35(5):580–584. https://doi.org/10.1016/j.ejvs.2007.12.004

    Article  CAS  Google Scholar 

  121. Xue L, Borne Y, Mattisson IY, Wigren M, Melander O, Ohro-Melander M, Bengtsson E, Fredrikson GN, Nilsson J, Engstrom G (2017) FADD, caspase-3, and caspase-8 and incidence of coronary events. Arterioscler Thromb Vasc Biol 37(5):983–989. https://doi.org/10.1161/ATVBAHA.117.308995

    Article  CAS  PubMed  Google Scholar 

  122. Musante L, Tataruch D, Gu D, Liu X, Forsblom C, Groop PH, Holthofer H (2015) Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. J Diabetes Res 2015:289734. https://doi.org/10.1155/2015/289734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao Z, Yang P, Eckert RL, Reece EA (2009) Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res B Dev Reprod Toxicol 86(1):72–77. https://doi.org/10.1002/bdrb.20185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Augstein P, Bahr J, Wachlin G, Heinke P, Berg S, Salzsieder E, Harrison LC (2004) Cytokines activate caspase-3 in insulinoma cells of diabetes-prone NOD mice directly and via upregulation of Fas. J Autoimmun 23(4):301–309. https://doi.org/10.1016/j.jaut.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  125. Trompet S, Pons D, Kanse SM, de Craen AJ, Ikram MA, Verschuren JJ, Zwinderman AH, Doevendans PA, Tio RA, de Winter RJ, Slagboom PE, Westendorp RG, Jukema JW (2011) Factor VII activating protease polymorphism (G534E) is associated with increased risk for stroke and mortality. Stroke Res Treat 2011:424759. https://doi.org/10.4061/2011/424759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Crocker SJ, Pagenstecher A, Campbell IL (2004) The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 75(1):1–11. https://doi.org/10.1002/jnr.10836

    Article  CAS  PubMed  Google Scholar 

  128. Brucher BL, Jamall IS (2016) Somatic mutation theory—why it’s wrong for most cancers. Cell Physiol Biochem 38(5):1663–1680. https://doi.org/10.1159/000443106

    Article  CAS  PubMed  Google Scholar 

  129. Brucher BL, Jamall IS (2014) Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14:331. https://doi.org/10.1186/1471-2407-14-331

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schuliga M (2015) The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015:437695. https://doi.org/10.1155/2015/437695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fan J, Ning B, Lyon CJ, Hu TY (2017) Circulating peptidome and tumor-resident proteolysis. Enzyme 42:1–25. https://doi.org/10.1016/bs.enz.2017.08.001

    Article  Google Scholar 

  132. Guo Z, Jin X, Jia H (2013) Inhibition of ADAM-17 more effectively down-regulates the Notch pathway than that of gamma-secretase in renal carcinoma. J Exp Clin Cancer Res 32:26. https://doi.org/10.1186/1756-9966-32-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jackson HW, Defamie V, Waterhouse P, Khokha R (2017) TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17(1):38–53. https://doi.org/10.1038/nrc.2016.115

    Article  CAS  PubMed  Google Scholar 

  134. LaRocca G, Aspelund T, Greve AM, Eiriksdottir G, Acharya T, Thorgeirsson G, Harris TB, Launer LJ, Gudnason V, Arai AE (2017) Fibrosis as measured by the biomarker, tissue inhibitor metalloproteinase-1, predicts mortality in Age Gene Environment Susceptibility-Reykjavik (AGES-Reykjavik) Study. Eur Heart J 38(46):3423–3430. https://doi.org/10.1093/eurheartj/ehx510

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lee JY, Kong G (2016) Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 73(24):4643–4660. https://doi.org/10.1007/s00018-016-2313-z

    Article  CAS  PubMed  Google Scholar 

  136. Otsuki T, Fujimoto D, Hirono Y, Goi T, Yamaguchi A (2014) Thrombin conducts epithelialmesenchymal transition via proteaseactivated receptor1 in human gastric cancer. Int J Oncol 45(6):2287–2294. https://doi.org/10.3892/ijo.2014.2651

    Article  CAS  PubMed  Google Scholar 

  137. Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM, Yeh ET (2012) Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 109(43):17466–17471. https://doi.org/10.1073/pnas.1209378109

    Article  PubMed  PubMed Central  Google Scholar 

  138. Schmidt N, Irle I, Ripkens K, Lux V, Nelles J, Johannes C, Parry L, Greenow K, Amir S, Campioni M, Baldi A, Oka C, Kawaichi M, Clarke AR, Ehrmann M (2016) Epigenetic silencing of serine protease HTRA1 drives polyploidy. BMC Cancer 16:399. https://doi.org/10.1186/s12885-016-2425-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnson JJ, Miller DL, Jiang R, Liu Y, Shi Z, Tarwater L, Williams R, Balsara R, Sauter ER, Stack MS (2016) Protease-activated receptor-2 (PAR-2)-mediated Nf-kappaB activation suppresses inflammation-associated tumor suppressor MicroRNAs in oral squamous cell carcinoma. J Biol Chem 291(13):6936–6945. https://doi.org/10.1074/jbc.M115.692640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang W, Wang S, Wang Q, Yang Z, Pan Z, Li L (2014) Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol Rep 31(3):1334–1342. https://doi.org/10.3892/or.2014.2967

    Article  CAS  PubMed  Google Scholar 

  141. Dian D, Heublein S, Wiest I, Barthell L, Friese K, Jeschke U (2014) Significance of the tumor protease cathepsin D for the biology of breast cancer. Histol Histopathol 29(4):433–438. https://doi.org/10.14670/HH-29.10.433

    Article  CAS  PubMed  Google Scholar 

  142. Cohen I, Kayode O, Hockla A, Sankaran B, Radisky DC, Radisky ES, Papo N (2016) Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy. Biochem J 473(10):1329–1341. https://doi.org/10.1042/BJ20151410

    Article  CAS  PubMed  Google Scholar 

  143. Salameh MA, Radisky ES (2013) Biochemical and structural insights into mesotrypsin: an unusual human trypsin. Int J Biochem Mol Biol 4(3):129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tanabe LM, List K (2017) The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J 284(10):1421–1436. https://doi.org/10.1111/febs.13971

    Article  CAS  PubMed  Google Scholar 

  145. Zoratti GL, Tanabe LM, Hyland TE, Duhaime MJ, Colombo E, Leduc R, Marsault E, Johnson MD, Lin CY, Boerner J, Lang JE, List K (2016) Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer. Oncotarget 7(36):58162–58173. https://doi.org/10.18632/oncotarget.11262

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rolfe M (2017) The holy grail: solid tumor efficacy by proteasome inhibition. Cell Chem Biol 24(2):125–126. https://doi.org/10.1016/j.chembiol.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  147. Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF (2017) Inhibition of the proteasome beta2 site sensitizes triple-negative breast cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol 24(2):218–230. https://doi.org/10.1016/j.chembiol.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD (2018) Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 18(1):5–18. https://doi.org/10.1038/nri.2017.97

    Article  CAS  PubMed  Google Scholar 

  149. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Parsa AT (2010) Cancer and the complement cascade. Mol Cancer Res 8(11):1453–1465. https://doi.org/10.1158/1541-7786.MCR-10-0225

    Article  CAS  PubMed  Google Scholar 

  150. Zhu L, Jaamaa S, Af Hallstrom TM, Laiho M, Sankila A, Nordling S, Stenman UH, Koistinen H (2013) PSA forms complexes with alpha1-antichymotrypsin in prostate. Prostate 73(2):219–226. https://doi.org/10.1002/pros.22560

    Article  CAS  PubMed  Google Scholar 

  151. DiScipio RG (1982) The activation of the alternative pathway C3 convertase by human plasma kallikrein. Immunology 45(3):587–595

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Caine GJ, Stonelake PS, Lip GY, Kehoe ST (2002) The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia 4(6):465–473. https://doi.org/10.1038/sj.neo.7900263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Amiral J, Seghatchian J (2017) Monitoring of anticoagulant therapy in cancer patients with thrombosis and the usefulness of blood activation markers. Transfus Apher Sci 56(3):279–286. https://doi.org/10.1016/j.transci.2017.05.010

    Article  PubMed  Google Scholar 

  154. Huesgen PF, Lange PF, Overall CM (2014) Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics Clin Appl 8(5-6):338–350. https://doi.org/10.1002/prca.201300104

    Article  CAS  PubMed  Google Scholar 

  155. Kang JH, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM (2013) Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin Chem 59(6):903–916. https://doi.org/10.1373/clinchem.2013.202937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, Hansson O (2016) Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep 6:26801. https://doi.org/10.1038/srep26801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG (2017) APP/Abeta structural diversity and Alzheimer’s disease pathogenesis. Neurochem Int 110:1–13. https://doi.org/10.1016/j.neuint.2017.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Evin G, Li QX (2012) Platelets and Alzheimer’s disease: potential of APP as a biomarker. World J Psychiatry 2(6):102–113. https://doi.org/10.5498/wjp.v2.i6.102

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wetzel S, Seipold L, Saftig P (2017) The metalloproteinase ADAM10: A useful therapeutic target? Biochim Biophys Acta 1864(11 Pt B):2071–2081. https://doi.org/10.1016/j.bbamcr.2017.06.005

    Article  CAS  Google Scholar 

  160. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, Zhang K, Liu YH, Zeng F, Liu JH, Sun HL, Zhuang ZQ, Chen SH, Yao XQ, Giunta B, Shan YC, Tan J, Chen XW, Dong ZF, Zhou HD, Zhou XF, Song W, Wang YJ (2017) Blood-derived amyloid-beta protein induces Alzheimer’s disease pathologies. Mol Psychiatry. https://doi.org/10.1038/mp.2017.204

  161. Budd Haeberlein S, O'Gorman J, Chiao P, Bussiere T, von Rosenstiel P, Tian Y, Zhu Y, von Hehn C, Gheuens S, Skordos L, Chen T, Sandrock A (2017) Clinical development of aducanumab, an anti-abeta human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimers Dis 4(4):255–263. https://doi.org/10.14283/jpad.2017.39

    Article  CAS  PubMed  Google Scholar 

  162. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, Hager K, Andreasen N, Scarpini E, Liu-Seifert H, Case M, Dean RA, Hake A, Sundell K, Poole Hoffmann V, Carlson C, Khanna R, Mintun M, DeMattos R, Selzler KJ, Siemers E (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378(4):321–330. https://doi.org/10.1056/NEJMoa1705971

    Article  CAS  PubMed  Google Scholar 

  163. De Strooper B (2014) Lessons from a failed gamma-secretase Alzheimer trial. Cell 159(4):721–726. https://doi.org/10.1016/j.cell.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  164. Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, Chirichigno J, Cudkowicz ME, Beal MF (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43(3):191–196

    Article  CAS  PubMed  Google Scholar 

  165. Siklos M, BenAissa M, Thatcher GR (2015) Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 5(6):506–519. https://doi.org/10.1016/j.apsb.2015.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  166. Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797(1):1–10. https://doi.org/10.1016/j.bbabio.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  167. Konig T, Troder SE, Bakka K, Korwitz A, Richter-Dennerlein R, Lampe PA, Patron M, Muhlmeister M, Guerrero-Castillo S, Brandt U, Decker T, Lauria I, Paggio A, Rizzuto R, Rugarli EI, De Stefani D, Langer T (2016) The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell 64(1):148–162. https://doi.org/10.1016/j.molcel.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  168. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14(15):2099–2111. https://doi.org/10.1093/hmg/ddi215

    Article  CAS  PubMed  Google Scholar 

  169. Fu J, Yu HM, Chiu SY, Mirando AJ, Maruyama EO, Cheng JG, Hsu W (2014) Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 10(10):e1004579. https://doi.org/10.1371/journal.pgen.1004579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG (2014) Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 8:380. https://doi.org/10.3389/fncel.2014.00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Descamps FJ, Van den Steen PE, Nelissen I, Van Damme J, Opdenakker G (2003) Remnant epitopes generate autoimmunity: from rheumatoid arthritis and multiple sclerosis to diabetes. Adv Exp Med Biol 535:69–77

    Article  CAS  PubMed  Google Scholar 

  172. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652. https://doi.org/10.1038/nrd3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rupanagudi KV, Kulkarni OP, Lichtnekert J, Darisipudi MN, Mulay SR, Schott B, Gruner S, Haap W, Hartmann G, Anders HJ (2015) Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann Rheum Dis 74(2):452–463. https://doi.org/10.1136/annrheumdis-2013-203717

    Article  CAS  PubMed  Google Scholar 

  174. Schaller M, Vogel M, Kentouche K, Lammle B, Kremer Hovinga JA (2014) The splenic autoimmune response to ADAMTS13 in thrombotic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs. Blood 124(23):3469–3479. https://doi.org/10.1182/blood-2014-04-561142

    Article  CAS  PubMed  Google Scholar 

  175. Sadiq SK, Noe F, De Fabritiis G (2012) Kinetic characterization of the critical step in HIV-1 protease maturation. Proc Natl Acad Sci U S A 109(50):20449–20454. https://doi.org/10.1073/pnas.1210983109

    Article  PubMed  PubMed Central  Google Scholar 

  176. Duschak VG, Couto AS (2009) Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem 16(24):3174–3202

    Article  CAS  PubMed  Google Scholar 

  177. Plaza K, Kalinska M, Bochenska O, Meyer-Hoffert U, Wu Z, Fischer J, Falkowski K, Sasiadek L, Bielecka E, Potempa B, Kozik A, Potempa J, Kantyka T (2016) Gingipains of porphyromonas gingivalis affect the stability and function of serine protease inhibitor of kazal-type 6 (SPINK6), a tissue inhibitor of human kallikreins. J Biol Chem 291(36):18753–18764. https://doi.org/10.1074/jbc.M116.722942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Culp E, Wright GD (2017) Bacterial proteases, untapped antimicrobial drug targets. J Antibiot (Tokyo) 70(4):366–377. https://doi.org/10.1038/ja.2016.138

    Article  CAS  Google Scholar 

  179. Chang AK, Kim HY, Park JE, Acharya P, Park IS, Yoon SM, You HJ, Hahm KS, Park JK, Lee JS (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187(20):6909–6916. https://doi.org/10.1128/JB.187.20.6909-6916.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bibo-Verdugo B, Jiang Z, Caffrey CR, O’Donoghue AJ (2017) Targeting proteasomes in infectious organisms to combat disease. FEBS J 284(10):1503–1517. https://doi.org/10.1111/febs.14029

    Article  CAS  PubMed  Google Scholar 

  181. Pontarollo G, Acquasaliente L, Peterle D, Frasson R, Artusi I, De Filippis V (2017) Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant-anticoagulant equilibrium toward thrombosis. J Biol Chem 292(37):15161–15179. https://doi.org/10.1074/jbc.M117.795245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Carroll IM, Maharshak N (2013) Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications. World J Gastroenterol 19(43):7531–7543. https://doi.org/10.3748/wjg.v19.i43.7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Boxrud PD, Verhamme IM, Bock PE (2004) Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase. J Biol Chem 279(35):36633–36641. https://doi.org/10.1074/jbc.M405264200

    Article  CAS  PubMed  Google Scholar 

  184. Chandrahas V, Glinton K, Liang Z, Donahue DL, Ploplis VA, Castellino FJ (2015) Direct host plasminogen binding to bacterial surface M-protein in pattern D strains of streptococcus pyogenes is required for activation by its natural coinherited SK2b protein. J Biol Chem 290(30):18833–18842. https://doi.org/10.1074/jbc.M115.655365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE (2004) The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol Life Sci 61(22):2793–2798. https://doi.org/10.1007/s00018-004-4285-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Parry MA, Zhang XC, Bode I (2000) Molecular mechanisms of plasminogen activation: bacterial cofactors provide clues. Trends Biochem Sci 25(2):53–59

    Article  CAS  PubMed  Google Scholar 

  187. Wiles KG, Panizzi P, Kroh HK, Bock PE (2010) Skizzle is a novel plasminogen- and plasmin-binding protein from Streptococcus agalactiae that targets proteins of human fibrinolysis to promote plasmin generation. J Biol Chem 285(27):21153–21164. https://doi.org/10.1074/jbc.M110.107730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Verhamme IM, Panizzi PR, Bock PE (2015) Pathogen activators of plasminogen. J Thromb Haemost 13(Suppl 1):S106–S114. https://doi.org/10.1111/jth.12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Meliopoulos VA, Andersen LE, Brooks P, Yan X, Bakre A, Coleman JK, Tompkins SM, Tripp RA (2012) MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One 7(5):e37169. https://doi.org/10.1371/journal.pone.0037169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Homma T, Ishibashi D, Nakagaki T, Fuse T, Mori T, Satoh K, Atarashi R, Nishida N (2015) Ubiquitin-specific protease 14 modulates degradation of cellular prion protein. Sci Rep 5:11028. https://doi.org/10.1038/srep11028

    Article  PubMed  PubMed Central  Google Scholar 

  191. Michaud DS, Lu J, Peacock-Villada AY, Barber JR, Joshu CE, Prizment AE, Beck JD, Offenbacher S, Platz EA (2018) Periodontal disease assessed using clinical dental measurements and cancer risk in the ARIC study. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx278

    Article  PubMed  PubMed Central  Google Scholar 

  192. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9(9):690–701. https://doi.org/10.1038/nrd3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Herzog RW (2015) Hemophilia gene therapy: caught between a cure and an immune response. Mol Ther 23(9):1411–1412. https://doi.org/10.1038/mt.2015.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rangarajan S, Walsh L, Lester W, Perry D, Madan B, Laffan M, Yu H, Vettermann C, Pierce GF, Wong WY, Pasi KJ (2017) AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. https://doi.org/10.1056/NEJMoa1708483

    Article  PubMed  Google Scholar 

  195. George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, Cuker A, Sullivan LM, Majumdar S, Teitel J, McGuinn CE, Ragni MV, Luk AY, Hui D, Wright JF, Chen Y, Liu Y, Wachtel K, Winters A, Tiefenbacher S, Arruda VR, van der Loo JCM, Zelenaia O, Takefman D, Carr ME, Couto LB, Anguela XM, High KA (2017) Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 377(23):2215–2227. https://doi.org/10.1056/NEJMoa1708538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lai PS, Thompson BT (2013) Why activated protein C was not successful in severe sepsis and septic shock: are we still tilting at windmills? Curr Infect Dis Rep 15(5):407–412. https://doi.org/10.1007/s11908-013-0358-9

    Article  PubMed  Google Scholar 

  197. Janciauskiene SM, Bals R, Koczulla R, Vogelmeier C, Kohnlein T, Welte T (2011) The discovery of alpha1-antitrypsin and its role in health and disease. Respir Med 105(8):1129–1139. https://doi.org/10.1016/j.rmed.2011.02.002

    Article  PubMed  Google Scholar 

  198. Carugati A, Pappalardo E, Zingale LC, Cicardi M (2001) C1-inhibitor deficiency and angioedema. Mol Immunol 38(2-3):161–173

    Article  CAS  PubMed  Google Scholar 

  199. Ricklin D, Lambris JD (2016) New milestones ahead in complement-targeted therapy. Semin Immunol 28(3):208–222. https://doi.org/10.1016/j.smim.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Towards better patient care: drugs to avoid in 2014 (2014). Prescrire Int 23(150):161–165

    Google Scholar 

  201. Adcock DM, Gosselin R (2015) Direct Oral Anticoagulants (DOACs) in the Laboratory: 2015 Review. Thromb Res 136(1):7–12. https://doi.org/10.1016/j.thromres.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  202. Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803(1):20–28. https://doi.org/10.1016/j.bbamcr.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  203. Gomis-Ruth FX (2017) Third time lucky? Getting a grip on matrix metalloproteinases. J Biol Chem 292(43):17975–17976. https://doi.org/10.1074/jbc.H117.806075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Scannevin RH, Alexander R, Haarlander TM, Burke SL, Singer M, Huo C, Zhang YM, Maguire D, Spurlino J, Deckman I, Carroll KI, Lewandowski F, Devine E, Dzordzorme K, Tounge B, Milligan C, Bayoumy S, Williams R, Schalk-Hihi C, Leonard K, Jackson P, Todd M, Kuo LC, Rhodes KJ (2017) Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem 292(43):17963–17974. https://doi.org/10.1074/jbc.M117.806075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Grunwald B, Vandooren J, Gerg M, Ahomaa K, Hunger A, Berchtold S, Akbareian S, Schaten S, Knolle P, Edwards DR, Opdenakker G, Kruger A (2016) Systemic ablation of MMP-9 triggers invasive growth and metastasis of pancreatic cancer via deregulation of IL6 expression in the bone marrow. Mol Cancer Res 14(11):1147–1158. https://doi.org/10.1158/1541-7786.MCR-16-0180

    Article  CAS  PubMed  Google Scholar 

  206. Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC (2017) Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem 118(11):3531–3548. https://doi.org/10.1002/jcb.26185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ 3rd (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85(5):967–981. https://doi.org/10.1016/j.neuron.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ran Y, Hossain F, Pannuti A, Lessard CB, Ladd GZ, Jung JI, Minter LM, Osborne BA, Miele L, Golde TE (2017) gamma-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol Med 9(7):950–966. https://doi.org/10.15252/emmm.201607265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Duong le T, Leung AT, Langdahl B (2016) Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif Tissue Int 98(4):381–397. https://doi.org/10.1007/s00223-015-0051-0

    Article  CAS  PubMed  Google Scholar 

  210. Drake MT, Clarke BL, Oursler MJ, Khosla S (2017) Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 38(4):325–350. https://doi.org/10.1210/er.2015-1114

    Article  PubMed  PubMed Central  Google Scholar 

  211. Su EJ, Cao C, Fredriksson L, Nilsson I, Stefanitsch C, Stevenson TK, Zhao J, Ragsdale M, Sun YY, Yepes M, Kuan CY, Eriksson U, Strickland DK, Lawrence DA, Zhang L (2017) Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathol 134(4):585–604. https://doi.org/10.1007/s00401-017-1749-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A (2014) Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 5(4):442–453. https://doi.org/10.1007/s12975-014-0336-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sun H, Xu Y, Sitkiewicz I, Ma Y, Wang X, Yestrepsky BD, Huang Y, Lapadatescu MC, Larsen MJ, Larsen SD, Musser JM, Ginsburg D (2012) Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci U S A 109(9):3469–3474. https://doi.org/10.1073/pnas.1201031109

    Article  PubMed  PubMed Central  Google Scholar 

  215. Silva DG, Ribeiro JFR, De Vita D, Cianni L, Franco CH, Freitas-Junior LH, Moraes CB, Rocha JR, Burtoloso ACB, Kenny PW, Leitao A, Montanari CA (2017) A comparative study of warheads for design of cysteine protease inhibitors. Bioorg Med Chem Lett 27(22):5031–5035. https://doi.org/10.1016/j.bmcl.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  216. Lv Z, Chu Y, Wang Y (2015) HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 7:95–104. https://doi.org/10.2147/HIV.S79956

    Article  CAS  Google Scholar 

  217. Ghosh AK, Brindisi M, Nyalapatla PR, Takayama J, Ella-Menye JR, Yashchuk S, Agniswamy J, Wang YF, Aoki M, Amano M, Weber IT, Mitsuya H (2017) Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex. Bioorg Med Chem 25(19):5114–5127. https://doi.org/10.1016/j.bmc.2017.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ghosh AK, Sean Fyvie W, Brindisi M, Steffey M, Agniswamy J, Wang YF, Aoki M, Amano M, Weber IT, Mitsuya H (2017) Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1′-P2′ ligands. Bioorg Med Chem Lett 27(21):4925–4931. https://doi.org/10.1016/j.bmcl.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McCauley JA, Rudd MT (2016) Hepatitis C virus NS3/4a protease inhibitors. Curr Opin Pharmacol 30:84–92. https://doi.org/10.1016/j.coph.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  220. Thornberry NA, Weber AE (2007) Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Curr Top Med Chem 7(6):557–568

    Article  CAS  PubMed  Google Scholar 

  221. Schramm VL (2013) Transition States, analogues, and drug development. ACS Chem Biol 8(1):71–81. https://doi.org/10.1021/cb300631k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mitsuya H, Maeda K, Das D, Ghosh AK (2008) Development of protease inhibitors and the fight with drug-resistant HIV-1 variants. Adv Pharmacol 56:169–197. https://doi.org/10.1016/S1054-3589(07)56006-0

    Article  CAS  PubMed  Google Scholar 

  223. Kipp DR, Hirschi JS, Wakata A, Goldstein H, Schramm VL (2012) Transition states of native and drug-resistant HIV-1 protease are the same. Proc Natl Acad Sci U S A 109(17):6543–6548. https://doi.org/10.1073/pnas.1202808109

    Article  PubMed  PubMed Central  Google Scholar 

  224. Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22(1):51–86. https://doi.org/10.1385/MB:22:1:051

    Article  CAS  PubMed  Google Scholar 

  225. Skarina T, Xu X, Evdokimova E, Savchenko A (2014) High-throughput crystallization screening. Methods Mol Biol 1140:159–168. https://doi.org/10.1007/978-1-4939-0354-2_12

    Article  CAS  PubMed  Google Scholar 

  226. Tiefenbrunn T, Forli S, Happer M, Gonzalez A, Tsai Y, Soltis M, Elder JH, Olson AJ, Stout CD (2014) Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease. Chem Biol Drug Des 83(2):141–148. https://doi.org/10.1111/cbdd.12227

    Article  CAS  PubMed  Google Scholar 

  227. Rydel TJ, Tulinsky A, Bode W, Huber R (1991) Refined structure of the hirudin-thrombin complex. J Mol Biol 221(2):583–601

    Article  CAS  PubMed  Google Scholar 

  228. Warkentin TE (2004) Bivalent direct thrombin inhibitors: hirudin and bivalirudin. Best Pract Res Clin Haematol 17(1):105–125. https://doi.org/10.1016/j.beha.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  229. Vance NR, Gakhar L, Spies MA (2017) Allosteric tuning of caspase-7: a fragment-based drug discovery approach. Angew Chem Int Ed Engl 56(46):14443–14447. https://doi.org/10.1002/anie.201706959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Weiss-Sadan T, Gotsman I, Blum G (2017) Cysteine proteases in atherosclerosis. FEBS J 284(10):1455–1472. https://doi.org/10.1111/febs.14043

    Article  CAS  PubMed  Google Scholar 

  231. Lee S, Xie J, Chen X (2010) Activatable molecular probes for cancer imaging. Curr Top Med Chem 10(11):1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ren G, Blum G, Verdoes M, Liu H, Syed S, Edgington LE, Gheysens O, Miao Z, Jiang H, Gambhir SS, Bogyo M, Cheng Z (2011) Non-invasive imaging of cysteine cathepsin activity in solid tumors using a 64Cu-labeled activity-based probe. PLoS One 6(11):e28029. https://doi.org/10.1371/journal.pone.0028029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Indalao IL, Sawabuchi T, Takahashi E, Kido H (2017) IL-1beta is a key cytokine that induces trypsin upregulation in the influenza virus-cytokine-trypsin cycle. Arch Virol 162(1):201–211. https://doi.org/10.1007/s00705-016-3093-3

    Article  CAS  PubMed  Google Scholar 

  234. Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS, Ferrell WR (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316(3):1017–1024. https://doi.org/10.1124/jpet.105.093807

    Article  CAS  PubMed  Google Scholar 

  235. Vergnolle N (2009) Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 123(3):292–309. https://doi.org/10.1016/j.pharmthera.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  236. French SL, Hamilton JR (2016) Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 173(20):2952–2965. https://doi.org/10.1111/bph.13455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kasperkiewicz P, Poreba M, Groborz K, Drag M (2017) Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 284(10):1518–1539. https://doi.org/10.1111/febs.14001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A 97(14):7754–7759. https://doi.org/10.1073/pnas.140132697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kasperkiewicz P, Poreba M, Snipas SJ, Parker H, Winterbourn CC, Salvesen GS, Drag M (2014) Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proc Natl Acad Sci U S A 111(7):2518–2523. https://doi.org/10.1073/pnas.1318548111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. O'Donoghue AJ, Eroy-Reveles AA, Knudsen GM, Ingram J, Zhou M, Statnekov JB, Greninger AL, Hostetter DR, Qu G, Maltby DA, Anderson MO, Derisi JL, McKerrow JH, Burlingame AL, Craik CS (2012) Global identification of peptidase specificity by multiplex substrate profiling. Nat Methods 9(11):1095–1100. https://doi.org/10.1038/nmeth.2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Li Q, Yi L, Hoi KH, Marek P, Georgiou G, Iverson BL (2017) Profiling protease specificity: combining yeast ER sequestration screening (YESS) with next generation sequencing. ACS Chem Biol 12(2):510–518. https://doi.org/10.1021/acschembio.6b00547

    Article  CAS  PubMed  Google Scholar 

  242. Fulcher LJ, Hutchinson LD, Macartney TJ, Turnbull C, Sapkota GP (2017) Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open Biol 7(5). https://doi.org/10.1098/rsob.170066

    Article  PubMed  PubMed Central  Google Scholar 

  243. Grossi G, Dalgaard Ebbesen Jepsen M, Kjems J, Andersen ES (2017) Control of enzyme reactions by a reconfigurable DNA nanovault. Nat Commun 8(1):992. https://doi.org/10.1038/s41467-017-01072-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lange PF, Huesgen PF, Overall CM (2012) TopFIND 2.0—linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res 40(Database issue):D351–D361. https://doi.org/10.1093/nar/gkr1025

    Article  CAS  PubMed  Google Scholar 

  245. Wang X, Davies M, Roy S, Kuruc M (2015) Bead based proteome enrichment enhances features of the protein elution plate (PEP) for functional proteomic profiling. Proteomes 3(4):454–466. https://doi.org/10.3390/proteomes3040454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zheng H, Roy S, Soherwardy A, Rahman S, Kuruc M (2017) Stroma liquid biopsy—proteomic profiles for cancer biomarkers. Poster reprint first presented at NJ Cancer Retreat, May 25, 2017 New Brunswick, NJ, USA

    Google Scholar 

  247. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983. https://doi.org/10.1038/nbt1235

    Article  CAS  PubMed  Google Scholar 

  248. Koenig W (2003) Fibrin(ogen) in cardiovascular disease: an update. Thromb Haemost 89(4):601–609

    Article  CAS  PubMed  Google Scholar 

  249. Dunn EJ, Ariens RA, Grant PJ (2005) The influence of type 2 diabetes on fibrin structure and function. Diabetologia 48(6):1198–1206. https://doi.org/10.1007/s00125-005-1742-2

    Article  CAS  PubMed  Google Scholar 

  250. Grammas P, Martinez JM (2014) Targeting thrombin: an inflammatory neurotoxin in Alzheimer’s disease. J Alzheimers Dis 42(Suppl 4):S537–S544. https://doi.org/10.3233/JAD-141557

    Article  CAS  PubMed  Google Scholar 

  251. Ahn HJ, Zamolodchikov D, Cortes-Canteli M, Norris EH, Glickman JF, Strickland S (2010) Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A 107(50):21812–21817. https://doi.org/10.1073/pnas.1010373107

    Article  PubMed  PubMed Central  Google Scholar 

  252. Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, Lambris JD, Huber-Lang M (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I.M.V. is supported by NIH/NHLBI grants R01 HL071544 and R01 HL130018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ingrid M. Verhamme or Ray C. Perkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verhamme, I.M., Leonard, S.E., Perkins, R.C. (2019). Proteases: Pivot Points in Functional Proteomics. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8814-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8814-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics