Skip to main content

Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The advent of precise genomic targeting systems has revolutionized epigenome editing through fusion of epigenetic effector proteins with engineered DNA-binding proteins. However, the delivery of plasmid DNA to express these fusion proteins via conventional transient transfection has certain consequences which need to be considered during the experimental design. Transient transfection achieves peak gene expression between 24 and 96 h post-transfection after which the foreign gene is lost through cell division and degradation. The use of cell lines stably expressing the effector fusion protein of interest provides several advantages compared to standard transfection methods, and the most suitable means for creating these cell lines was found to be viral delivery followed by stable integration of the transgenes into the host genome. Here we describe a practical protocol to generate murine cell lines stably expressing fusion proteins of chromatin regulators and DNA-binding proteins using a retroviral murine stem cell virus (MSCV)-based vector system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kungulovski G, Jeltsch A (2015) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32:101–113

    Article  Google Scholar 

  2. Siddique AN, Nunna S, Rajavelu A et al (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491

    Article  CAS  Google Scholar 

  3. Rivenbark AG, Stolzenburg S, Beltran AS et al (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350–360

    Article  CAS  Google Scholar 

  4. Gregory DJ, Zhang Y, Kobzik L, Fedulov AV (2013) Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8:1205–1212

    Article  CAS  Google Scholar 

  5. Chen H, Kazemier HG, De Groote ML et al (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42:1563–1574

    Article  CAS  Google Scholar 

  6. Nunna S, Reinhardt R, Ragozin S, Jeltsch A (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 9(1):e87703

    Article  Google Scholar 

  7. Keung AJ, Bashor CJ, Kiriakov S et al (2014) Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110–120

    Article  CAS  Google Scholar 

  8. Kungulovski G, Nunna S, Thomas M et al (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12

    Article  Google Scholar 

  9. Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  Google Scholar 

  10. Cong L, Zhou RH, Kuo YC et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  Google Scholar 

  11. Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH (2015) TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest 125:1998–2006

    Article  Google Scholar 

  12. Amabile A, Migliara A, Capasso P et al (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232.e14

    Article  CAS  Google Scholar 

  13. Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136

    Article  CAS  Google Scholar 

  14. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  Google Scholar 

  15. Kearns NA, Pham H, Tabak B et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–403

    Article  CAS  Google Scholar 

  16. Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  CAS  Google Scholar 

  17. Danthinne X, Imperiale MJ (2000) Production of first generation adenovirus vectors: a review. Gene Ther 7:1707–1714

    Article  CAS  Google Scholar 

  18. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  Google Scholar 

  19. Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gélinas C, Temin HM (1986) Nondefective spleen necrosis virus-derived vectors define the upper size limit for packaging reticuloendotheliosis viruses. Proc Natl Acad Sci U S A 83:9211–9215

    Article  Google Scholar 

  21. Akkina RK, Walton RM, Chen ML et al (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    Article  CAS  Google Scholar 

  23. Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Yu SF, von Rüden T, Kantoff PW et al (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A 83:3194–3198

    Article  CAS  Google Scholar 

  25. Gossen M, Freundlieb S, Bender G et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  CAS  Google Scholar 

  26. Cherry SR, Biniszkiewicz D, van Parijs L et al (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20:7419–7426

    Article  CAS  Google Scholar 

  27. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sabine Pinter for the constructive feedback on the manuscript. The work described here was supported by the Wilhelm Sander Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rathert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kroll, C., Rathert, P. (2018). Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics