Skip to main content

Protein Digestion for DIGE Analysis

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

In-gel digestion of protein spots derived from two-dimensional gels and their subsequent identification by mass spectrometry is involved in a multitude of mass spectrometry-driven proteomic experiments, including fluorescence difference gel electrophoresis (DIGE). This type of proteomic methodology has been involved in the establishment of comparative proteome maps and in the identification of differentially expressed proteins and protein isoforms in health and disease. Most in-gel digestion protocols follow a number of common steps including excision of the protein spots of interest, de-staining, reduction and alkylation (for silver-stained gels), dehydration and overnight digestion with the proteolytic enzyme of choice. While trypsin has been a mainstay of peptide digestion for many years, it does have its shortcomings, particularly related to incomplete peptide digestion, and this has led to a rise in popularity for other proteolytic enzymes either used alone or in combination. This chapter discusses the alternative enzymes available and describes the process of in-gel digestion using the enzyme trypsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  2. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  3. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  4. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  5. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  PubMed  Google Scholar 

  6. Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  7. Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  Google Scholar 

  8. Dowsey AW, Morris JS, Gutstein HB, Yang GZ (2010) Informatics and statistics for analyzing 2-d gel electrophoresis image. Methods Mol Biol 604:239–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  10. Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1:1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choksawangkarn W, Edwards N, Wang Y et al (2012) Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins. J Proteome Res 11:3030–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  13. Thiede B, Höhenwarter W, Krah A et al (2005) Peptide mass fingerprinting. Methods 35:237–247

    Article  CAS  PubMed  Google Scholar 

  14. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    Article  CAS  PubMed  Google Scholar 

  15. Siepen JA, Keevil EJ, Knight D, Hubbard SJ (2007) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J Proteome Res 6:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffin NM, Schnitzer JE (2011) Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol Cell Proteomics 10:R110.000935

    Article  PubMed  Google Scholar 

  17. Giansanti P, Tsiatsiani L, Low TY, Heck AJ (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11:993–1006

    Article  CAS  PubMed  Google Scholar 

  18. Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9:1323–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glatter T, Ludwig C, Ahrné E et al (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11:5145–5156

    Article  CAS  PubMed  Google Scholar 

  20. Dowling P, Hayes C, Ting KR et al (2014) Identification of proteins found to be significantly altered when comparing the serum proteome from multiple myeloma patients with varying degrees of bone disease. BMC Genomics 15:904

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holland A, Henry M, Meleady P et al (2015) Comparative label-free mass spectrometric analysis of mildly versus severely affected mdx mouse skeletal muscles identifies annexin, lamin, and vimentin as universal dystrophic markers. Molecules 20:11317–11344

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Trudgian DC, Lemoff A et al (2014) Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics. Mol Cell Proteomics 13:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choudhary G, Wu SL, Shieh P, Hancock WS (2003) Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res 2:59–67

    Article  CAS  PubMed  Google Scholar 

  24. Biringer RG, Amato H, Harrington MG et al (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5:144–153

    Article  CAS  PubMed  Google Scholar 

  25. Temporini C, Calleri E, Cabrera K et al (2009) On-line multi-enzymatic approach for improved sequence coverage in protein analysis. J Sep Sci 32:1120–1128

    Article  CAS  PubMed  Google Scholar 

  26. Vermachova M, Purkrtova Z, Santrucek J et al (2011) New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis. Proteomics 11:3430–3434

    Article  CAS  PubMed  Google Scholar 

  27. Tweedie-Cullen RY, Brunner AM, Grossmann J et al (2012) Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 7:e36980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hohmann L, Sherwood C, Eastham A et al (2009) Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N. J Proteome Res 8:1415–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taouatas N, Drugan MM, Heck AJ, Mohammed S (2008) Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5:405–407

    Article  CAS  PubMed  Google Scholar 

  30. Wiśniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84:2631–2637

    Article  PubMed  Google Scholar 

  31. Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:1416–1421

    Article  CAS  PubMed  Google Scholar 

  32. Jiménez CR, Huang L, Qiu Y, Burlingame AL (2001) In-gel digestion of proteins for MALDI-MS fingerprint mapping. Curr Protoc Protein Sci, Chapter 16:Unit 16.4

    Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory has been supported by project grants from the Irish Higher Education Authority, the Irish Health Research Board and Muscular Dystrophy Ireland, as well as a Hume Scholarship from Maynooth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Murphy, S., Ohlendieck, K. (2018). Protein Digestion for DIGE Analysis. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics