Skip to main content

Sirtuin1 (SIRT1) in the Acetylation of Downstream Target Proteins

  • Protocol
  • First Online:
Histone Deacetylases

Abstract

Acetylation has been shown to be an important posttranslational modification (PTM) of both histone and nonhistone proteins with particular implications in cell signaling and transcriptional regulation of gene expression. Many studies have already demonstrated that SIRT1 is able to deacetylate histones and lead to gene silencing. It can also regulate the function of tumor suppressors including FOXO proteins and p53 by deacetylation. Here, we describe three experimental approaches for studying the modulation of the acetylation status of some of the known downstream targets of SIRT1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shore D, Squire M, Nasmyth KA (1984) Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3(12):2817–2823

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liszt G et al (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320

    Article  CAS  PubMed  Google Scholar 

  4. Vaquero A et al (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16(1):93–105

    Article  CAS  PubMed  Google Scholar 

  5. Luo J et al (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408(6810):377–381

    Article  CAS  PubMed  Google Scholar 

  6. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  7. Motta MC et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Article  CAS  PubMed  Google Scholar 

  8. Huffman DM et al (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67(14):6612–6618

    Article  CAS  PubMed  Google Scholar 

  9. Eades G et al (2011) miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286(29):25992–26002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stunkel W et al (2007) Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2(11):1360–1368

    Article  CAS  PubMed  Google Scholar 

  11. Bradbury CA et al (2005) Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19(10):1751–1759

    Article  CAS  PubMed  Google Scholar 

  12. Vaziri H et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    Article  CAS  PubMed  Google Scholar 

  13. Luo J et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107(2):137–148

    Article  CAS  PubMed  Google Scholar 

  14. Lain S et al (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13(5):454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peck B et al (2010) SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther 9(4):844–855

    Article  CAS  PubMed  Google Scholar 

  16. Wang RH et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herranz D et al (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang RH et al (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Sci Aging Knowl Environ 2004(8):2

    Google Scholar 

  20. Khongkow M et al (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34(7):1476–1486

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Kraus WL (2010) SIRT1-dependent regulation of chromatin and transcription: linking NAD+ metabolism and signaling to the control of cellular functions. Biochim Biophys Acta 1804(8):1666–1675

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J et al (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8(11):1747–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daitoku H et al (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. PNAS 101(27):10042–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Z, Fang D (2013) The roles of SIRT1 in cancer. Genes Cancer 421(2):384–388

    Google Scholar 

  25. Bouras T et al (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280(11):10264–10276

    Article  CAS  PubMed  Google Scholar 

  26. Qiang L et al (2012) Brown remodeling of white adipose tissue by SIRT1-dependent deacetylation of Ppary. Cell 150(3):620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pestell R et al (2013) Ppary deacetylation by SIRT1 determines breast tumour lipid synthesis and growth. Cancer Res 73:2-06-02

    Google Scholar 

  28. Yeung F et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBOJ 23(12):2369–2380

    Article  CAS  Google Scholar 

  29. Pickard A, Wong PP, McCance DJ (2010) Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 123:3718–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menssen A et al (2012) The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. PNAS 109(4):187–196

    Article  Google Scholar 

  31. Bharathy N, Taneja R (2012) Methylation muscles into transcription factor silencing. Transcription 3(5):215–220

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao X et al (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25(19):8456–8464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng HL et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. PNAS 100(19):10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dehennaut V et al (2012) Molecular dissection of the interaction between HIC1 and SIRT1. Biochem Biophys Res Commun 421(2):384–388

    Article  CAS  PubMed  Google Scholar 

  35. Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Sci Express 10(1126):1–4

    Google Scholar 

  36. Fan W, Luo J (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 39(2):247–258

    Article  CAS  PubMed  Google Scholar 

  37. Yuan Z et al (2007) SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 27(1):149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Westerheide SD et al (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tiberi L et al (2012) BCL6 controls neurogenesis through SIRT1-dependent epigenetic repression of selective notch targets. Nat Neurosci 15(12):1627–1635

    Article  CAS  PubMed  Google Scholar 

  40. Inoue Y et al (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y et al (2012) Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Am Soc Biochem Mol Biol 11(10):1048–1062

    CAS  Google Scholar 

  42. Nakagawa T, Guarente L (2011) Sirtuins at a glance. J Cell Sci 124:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ikenoue T, Inoki K, Zhao B (2008) PTEN acetylation modulates its interaction with PDZ domain. Cancer Res 68:6908–6912

    Article  CAS  PubMed  Google Scholar 

  44. Montie HL, Pestell RG, Merry DE (2011) SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. J Neurosci 21(48):17425–17436

    Article  Google Scholar 

  45. Akieda-Asai S et al (2010) SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kγ activity through deacetylation of specific lysine residues in mammals. PLoS One 5(7)

    Google Scholar 

  46. Chen IY et al (2006) Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. J Biol Chem 281(8):19369–19377

    Article  CAS  PubMed  Google Scholar 

  47. Yu J, Auwerx J (2010) Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res 62(1):35–41

    Article  CAS  PubMed  Google Scholar 

  48. Peng L et al (2011) SIRT1 deacetylates the DNA Methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 31:4720–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. PNAS 103(27):10230–10235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fusco S, Maulucci G, Pani G (2012) Sirt1: Def-eating senescence? Cell Cycle 11(22):4135–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W.-F. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gomes, A.R. et al. (2016). Sirtuin1 (SIRT1) in the Acetylation of Downstream Target Proteins. In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics