Skip to main content

Cartilage Tissue Engineering: What Have We Learned in Practice?

  • Protocol
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1340))

Abstract

Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birk GT, DeLee JC (2001) Osteochondral injuries: clinical findings. Clin Sports Med 20:279–286

    Article  CAS  Google Scholar 

  2. Friel NA, Chu CR (2013) The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin Sports Med 32:1–12

    Article  Google Scholar 

  3. Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28:5–15

    Article  Google Scholar 

  4. Shepherd DET, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34

    Article  CAS  Google Scholar 

  5. Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36:539–568

    Article  CAS  Google Scholar 

  6. Athanasiou K, Darling EM, Hu JC (2009) Articular cartilage tissue engineering. Morgan and Claypool, San Rafael, USA

    Google Scholar 

  7. Aulthouse AL, Beck M, Griffey E et al (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol 25:659–668

    Article  CAS  Google Scholar 

  8. Hardingham T, Tew S, Murdoch A (2002) Tissue engineering: chondrocytes and cartilage. Arthritis Res 4(Suppl 3):S63–S68

    Article  Google Scholar 

  9. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  CAS  Google Scholar 

  10. Murphy CL, Sambanis A (2001) Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng 7:791–803

    Article  CAS  Google Scholar 

  11. Schulze-Tanzil G, Mobasheri A, De Souza P et al (2004) Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc–Erk interaction and apoptosis. Osteoarthritis Cartilage 12:448–458

    Article  Google Scholar 

  12. Pan Z, Ding J (2012) Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2:366–377

    Article  Google Scholar 

  13. Zhao W, Jin X, Cong Y et al (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339

    Article  CAS  Google Scholar 

  14. Klein TJ, Malda J, Sah RL et al (2009) Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 15:143–157

    Article  CAS  Google Scholar 

  15. Benders KEM, Van Weeren PR, Badylak SF et al (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176

    Article  CAS  Google Scholar 

  16. Barrère F, Mahmood TA, De Groot K et al (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mat Sci Eng R 59:38–71

    Article  CAS  Google Scholar 

  17. Nuernberger S, Cyran N, Albrecht C et al (2011) The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32:1032–1040

    Article  CAS  Google Scholar 

  18. Athanasiou KA, Eswaramoorthy R, Hadidi P et al (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136

    Article  CAS  Google Scholar 

  19. Ko EC, Fujihara Y, Ogasawara T et al (2011) Administration of the insulin into the scaffold atelocollagen for tissue-engineered cartilage. J Biomed Mater Res A 97:186–192

    Article  CAS  Google Scholar 

  20. Ofek G, Revell CM, Hu JC et al (2008) Matrix development in self-assembly of articular cartilage. PLoS One 3(7):e2795

    Article  CAS  Google Scholar 

  21. Mohanraj B, Farran AJ, Mauck RL et al (2014) Time-dependent functional maturation of scaffold-free cartilage tissue analogs. J Biomech 47:2137–2142

    Article  Google Scholar 

  22. Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867

    Article  CAS  Google Scholar 

  23. Pazzano D, Mercier KA, Moran JM et al (2000) Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol Prog 16:893–896

    Article  CAS  Google Scholar 

  24. Gooch KJ, Kwon JH, Blunk T et al (2001) Effects of mixing intensity on tissue-engineered cartilage. Biotechnol Bioeng 72:402–407

    Article  CAS  Google Scholar 

  25. Gemmiti CV, Guldberg RE (2006) Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng 12:469–479

    Article  CAS  Google Scholar 

  26. Mammoto A, Ingber DE (2009) Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol 21:864–870

    Article  CAS  Google Scholar 

  27. Arnsdorf EJ, Tummala P, Kwon RY et al (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553

    Article  CAS  Google Scholar 

  28. Yeatts AB, Choquette DT, Fisher JP (2013) Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta 1830:2470–2480

    Article  CAS  Google Scholar 

  29. Davisson T, Sah RL, Ratcliffe A (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8:807–816

    Article  CAS  Google Scholar 

  30. Freyria A-M, Yang Y, Chajra H et al (2005) Optimization of dynamic culture conditions: effects on biosynthetic activities of chondrocytes grown in collagen sponges. Tissue Eng 11:674–684

    Article  CAS  Google Scholar 

  31. Shahin K, Doran PM (2011) Strategies for enhancing the accumulation and retention of extracellular matrix in tissue-engineered cartilage cultured in bioreactors. PLoS One 6(8):e23119

    Article  CAS  Google Scholar 

  32. Bueno EM, Bilgen B, Barabino GA (2005) Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 11:1699–1709

    Article  CAS  Google Scholar 

  33. Grodzinsky AJ, Levenston ME, Jin M et al (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713

    Article  CAS  Google Scholar 

  34. Kisiday JD, Jin M, DiMicco MA et al (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37:595–604

    Article  Google Scholar 

  35. Waldman SD, Spiteri CG, Grynpas MD et al (2004) Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 10:1323–1331

    Article  CAS  Google Scholar 

  36. Mouw JK, Connelly JT, Wilson CG et al (2007) Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663

    Article  CAS  Google Scholar 

  37. Terraciano V, Hwang N, Moroni L et al (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738

    Article  CAS  Google Scholar 

  38. Pelaez D, Huang C-YC, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18:93–102

    Article  CAS  Google Scholar 

  39. Haugh MG, Meyer EG, Thorpe SD et al (2011) Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression. Tissue Eng Part A 17:3085–3093

    Article  CAS  Google Scholar 

  40. Shahin K, Doran PM (2012) Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints. Biotechnol Bioeng 109:1060–1073

    Article  CAS  Google Scholar 

  41. Li Z, Yao S-J, Alini M et al (2010) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin–polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A 16:575–584

    Article  CAS  Google Scholar 

  42. Grad S, Loparic M, Peter R et al (2012) Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthritis Cartilage 20:288–295

    Article  CAS  Google Scholar 

  43. Huang AH, Baker BM, Ateshian GA et al (2012) Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. Eur Cells Mater 24:29–45

    Google Scholar 

  44. Vinardell T, Sheehy EJ, Buckley CT et al (2012) A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 18:1161–1170

    Article  CAS  Google Scholar 

  45. Phillips MD, Kuznetsov SA, Cherman N et al (2014) Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays. Stem Cells Transl Med 3:867–878

    Article  CAS  Google Scholar 

  46. Pleumeekers MM, Nimeskern L, Koevoet WLM et al (2014) The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage. Eur Cells Mater 27:264–280

    CAS  Google Scholar 

  47. Huang S-J, Fu R-H, Shyu W-C et al (2013) Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant 22:701–709

    Article  Google Scholar 

  48. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  Google Scholar 

  49. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277

    Article  CAS  Google Scholar 

  50. Ghosh Z, Huang M, Hu S et al (2011) Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res 71:5030–5039

    Article  CAS  Google Scholar 

  51. Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80

    Article  CAS  Google Scholar 

  52. English K, Wood KJ (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 16:90–95

    Article  CAS  Google Scholar 

  53. Swijnenburg R-J, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 105:12991–12996

    Article  CAS  Google Scholar 

  54. Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 366:2312–2322

    Article  CAS  Google Scholar 

  55. Zhou Y, Zeng F (2013) Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics 11:284–287

    Article  CAS  Google Scholar 

  56. Diecke S, Jung SM, Lee J et al (2014) Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 29:547–557

    Article  CAS  Google Scholar 

  57. Park S, Im G-I (2014) Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration. Tissue Eng Part B Rev 20:381–391

    Article  Google Scholar 

  58. Da Silva Meirelles L, Fontes AM, Covas DT et al (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Article  CAS  Google Scholar 

  59. Aronin CEP, Tuan RS (2010) Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res C Embryo Today 90:67–74

    Article  CAS  Google Scholar 

  60. Griffin MD, Ritter T, Mahon BP (2010) Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther 21:1641–1655

    Article  CAS  Google Scholar 

  61. Mahmoudifar N, Doran PM (2005) Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnol Bioeng 91:338–355

    Article  CAS  Google Scholar 

  62. Saha S, Kirkham J, Wood D et al (2010) Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes. Biochem Biophys Res Commun 401:333–338

    Article  CAS  Google Scholar 

  63. Adkisson HD, Martin JA, Amendola RL et al (2010) The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 38:1324–1333

    Article  Google Scholar 

  64. Jakob M, Démarteau O, Suetterlin R et al (2004) Chondrogenesis of expanded adult human articular chondrocytes is enhanced by specific prostaglandins. Rheumatology 43:852–857

    Article  CAS  Google Scholar 

  65. Schrobback K, Klein TJ, Schuetz M et al (2011) Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation. J Orthop Res 29:539–546

    Article  Google Scholar 

  66. Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189

    Article  CAS  Google Scholar 

  67. Connelly JT, Wilson CG, Levenston ME (2008) Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthritis Cartilage 16:1092–1100

    Article  CAS  Google Scholar 

  68. Huang AH, Stein A, Mauck RL (2010) Evaluation of the complex transcriptional topography of mesenchymal stem cell chondrogenesis for cartilage tissue engineering. Tissue Eng Part A 16:2699–2708

    Article  CAS  Google Scholar 

  69. Mahmoudifar N, Doran PM (2010) Extent of cell differentiation and capacity for cartilage synthesis in human adult adipose-derived stem cells: comparison with fetal chondrocytes. Biotechnol Bioeng 107:393–401

    Article  CAS  Google Scholar 

  70. Meretoja VV, Dahlin RL, Wright S et al (2013) The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials 34:4266–4273

    Article  CAS  Google Scholar 

  71. Saha S, Kirkham J, Wood D et al (2013) Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering. Cell Tissue Res 352:495–507

    Article  Google Scholar 

  72. Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432

    Article  CAS  Google Scholar 

  73. Rackwitz L, Djouad F, Janjanin S et al (2014) Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage 22:1148–1157

    Article  CAS  Google Scholar 

  74. Kafienah W, Cheung FL, Sims T et al (2008) Lumican inhibits collagen deposition in tissue engineered cartilage. Matrix Biol 27:526–534

    Article  CAS  Google Scholar 

  75. Mahmoudifar N, Doran PM (2012) Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends Biotechnol 30:166–176

    Article  CAS  Google Scholar 

  76. Steck E, Bertram H, Abel R et al (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23:403–411

    Article  CAS  Google Scholar 

  77. Somoza RA, Welter JF, Correa D et al (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20:596–608

    Article  Google Scholar 

  78. Hwang NS, Varghese S, Elisseeff J (2008) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3(6):e2498

    Article  CAS  Google Scholar 

  79. Qu C, Puttonen KA, Lindeberg H et al (2013) Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 45:1802–1812

    Article  CAS  Google Scholar 

  80. Yao Y, Zhang F, Zhou R et al (2010) Effects of combinational adenoviral vector-mediated TGFβ3 transgene and shRNA silencing type I collagen on articular chondrogenesis of synovium-derived mesenchymal stem cells. Biotechnol Bioeng 106:818–828

    Article  CAS  Google Scholar 

  81. Perrier-Groult E, Pasdeloup M, Malbouyres M et al (2013) Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage. Tissue Eng Part C Methods 19:652–664

    Article  CAS  Google Scholar 

  82. Freyria A-M, Mallein-Gerin F (2012) Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 43:259–265

    Article  Google Scholar 

  83. Sekiya I, Vuoristo JT, Larson BL et al (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402

    Article  CAS  Google Scholar 

  84. Pelttari K, Winter A, Steck E et al (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266

    Article  CAS  Google Scholar 

  85. Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39(Suppl 1):S58–S65

    Article  Google Scholar 

  86. Kim Y-J, Kim H-J, Im G-I (2008) PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem Biophys Res Commun 373:104–108

    Article  CAS  Google Scholar 

  87. Varghese S, Hwang NS, Canver AC et al (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27:12–21

    Article  CAS  Google Scholar 

  88. Dickhut A, Pelttari K, Janicki P et al (2009) Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 219:219–226

    Article  CAS  Google Scholar 

  89. Weiss S, Hennig T, Bock R et al (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223:84–93

    CAS  Google Scholar 

  90. Lee H-H, Chang C-C, Shieh M-J et al (2013) Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep 3:2683. doi:10.1038/srep02683

    Google Scholar 

  91. Lee JM, Kim JD, Oh EJ et al (2014) PD98059-impregnated functional PLGA scaffold for direct tissue engineering promotes chondrogenesis and prevents hypertrophy from mesenchymal stem cells. Tissue Eng Part A 20:982–991

    Article  CAS  Google Scholar 

  92. Hubka KM, Dahlin RL, Meretoja VV et al (2014) Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B Rev 20:641–654

    Article  Google Scholar 

  93. Fischer J, Dickhut A, Rickert M et al (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62:2696–2706

    Article  CAS  Google Scholar 

  94. Khan IM, Gilbert SJ, Singhrao SK et al (2008) Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. Eur Cells Mater 16:26–39

    CAS  Google Scholar 

  95. Pabbruwe MB, Esfandiari E, Kafienah W et al (2009) Induction of cartilage integration by a chondrocyte/collagen-scaffold implant. Biomaterials 30:4277–4286

    Article  CAS  Google Scholar 

  96. Lu Y, Xu Y, Yin Z et al (2013) Chondrocyte migration affects tissue-engineered cartilage integration by activating the signal transduction pathways involving Src, PLCγ1, and ERK1/2. Tissue Eng Part A 19:2506–2516

    Article  CAS  Google Scholar 

  97. Allon AA, Ng KW, Hammoud S et al (2012) Augmenting the articular cartilage-implant interface: functionalizing with a collagen adhesion protein. J Biomed Mater Res A 100:2168–2175

    Article  CAS  Google Scholar 

  98. Athens AA, Makris EA, Hu JC (2013) Induced collagen cross-links enhance cartilage integration. PLoS One 8(4):e60719

    Article  CAS  Google Scholar 

  99. Gilbert SJ, Singhrao SK, Khan IM et al (2009) Enhanced tissue integration during cartilage repair in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng Part A 15:1739–1749

    Article  CAS  Google Scholar 

  100. Yang Y-H, Ard MB, Halper JT et al (2014) Type I collagen-based fibrous capsule enhances integration of tissue-engineered cartilage with native articular cartilage. Ann Biomed Eng 42:716–726

    Article  Google Scholar 

  101. Wang D-A, Varghese S, Sharma B et al (2007) Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater 6:385–392

    Article  CAS  Google Scholar 

  102. Koyama N, Miura M, Nakao K et al (2013) Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev 22:102–113

    Article  CAS  Google Scholar 

  103. Kim M-J, Son MJ, Son M-Y et al (2011) Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells. Arthritis Rheum 63:3010–3021

    Article  CAS  Google Scholar 

  104. Wei Y, Zeng W, Wan R et al (2012) Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cells Mater 23:1–12

    CAS  Google Scholar 

  105. Medvedev SP, Grigor’eva EV, Shevchenko AI et al (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev 20:1099–1112

    Article  CAS  Google Scholar 

  106. Gardner OFW, Archer CW, Alini M et al (2013) Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 28:23–42

    CAS  Google Scholar 

  107. Ahmed TAE, Hincke MT (2014) Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol 29:669–689

    CAS  Google Scholar 

  108. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  Google Scholar 

  109. Pievani A, Scagliotti V, Russo FM et al (2014) Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy 16:893–905

    Article  CAS  Google Scholar 

  110. Tondreau T, Meuleman N, Delforge A et al (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  CAS  Google Scholar 

  111. Kolambkar YM, Peister A, Soker S et al (2007) Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 38:405–413

    Article  CAS  Google Scholar 

  112. Li F, Chen Y-Z, Miao Z-N et al (2012) Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram 14:334–341

    CAS  Google Scholar 

  113. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  Google Scholar 

  114. Jansen EJP, Emans PJ, Guldemond NA et al (2008) Human periosteum-derived cells from elderly patients as a source for cartilage tissue engineering? J Tissue Eng Regen Med 2:331–339

    Article  CAS  Google Scholar 

  115. Barachini S, Danti S, Pacini S et al (2014) Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine. Micron 67:155–168

    Article  CAS  Google Scholar 

  116. Chang C-H, Chen C-C, Liao C-H et al (2014) Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A 102:2248–2257

    Article  CAS  Google Scholar 

  117. Andriamanalijaona R, Duval E, Raoudi M et al (2008) Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 16:1509–1518

    Article  CAS  Google Scholar 

  118. Tay AG, Farhadi J, Suetterlin R et al (2004) Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 10:762–770

    Article  Google Scholar 

  119. Park SS, Jin H-R, Chi DH et al (2004) Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials 25:2363–2369

    Article  CAS  Google Scholar 

  120. Liu Y, Goldberg AJ, Dennis JE et al (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225

    Article  CAS  Google Scholar 

  121. Cheng A, Kapacee Z, Peng J et al (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3:1287–1294

    Article  CAS  Google Scholar 

  122. Kim H-J, Im G-I (2009) Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res 27:612–619

    Article  CAS  Google Scholar 

  123. Sakaguchi Y, Sekiya I, Yagishita K et al (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  Google Scholar 

  124. Kafienah W, Jakob M, Démarteau O et al (2002) Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng 8:817–826

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Doran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Doran, P.M. (2015). Cartilage Tissue Engineering: What Have We Learned in Practice?. In: Doran, P. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 1340. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2938-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2938-2_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2937-5

  • Online ISBN: 978-1-4939-2938-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics