Skip to main content

Design, Construction, and Characterization Methodologies for Synthetic Microbial Consortia

  • Protocol
  • First Online:
Engineering and Analyzing Multicellular Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

Engineered microbial consortia are of growing interest to a range of scientists including bioprocess engineers, systems biologists, and microbiologists because of their ability to simultaneously optimize multiple tasks, to test fundamental systems science, and to understand the microbial ecology of environments like chronic wounds. Metabolic engineering, synthetic biology, and microbial ecology provide a sound scientific basis for designing, building, and analyzing consortium-based microbial platforms.

This chapter outlines strategies and protocols useful for (1) in silico network design, (2) experimental strain construction, (3) consortia culturing including biofilm growth methods, and (4) physiological characterization of consortia. The laboratory and computational methods given here may be adapted for synthesis and characterization of other engineered consortia designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7(1):69–80. doi:10.1046/j.1461-0248.2003.00551.x

    Article  Google Scholar 

  2. McMahon KD, Martin HG, Hugenholtz P (2007) Integrating ecology into biotechnology. Curr Opin Biotechnol 18(3):287–292. doi:S0958-1669(07)00056-0 [pii]10.1016/j.copbio.2007.04.007

    Article  CAS  Google Scholar 

  3. Bernstein HC, Paulson SD, Carlson RP (2012) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol 157(1):159–166. doi:10.1016/j.jbiotec.2011.10.001

    Article  CAS  Google Scholar 

  4. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489. doi:S0167-7799(08)00171-6 [pii]10.1016/j.tibtech.2008.05.004

    Article  CAS  Google Scholar 

  5. Taffs R, Aston J, Brileya K, Jay Z, Klatt C, McGlynn S, Mallette N, Montross S, Gerlach R, Inskeep W, Ward D, Carlson R (2009) In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC Syst Biol 3(1):114

    Article  Google Scholar 

  6. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407. doi:msb201066 [pii]10.1038/msb.2010.66

    Article  Google Scholar 

  7. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24(23):2603–2614. doi:24/23/2603 [pii]10.1101 /gad.1985210

    Article  CAS  Google Scholar 

  8. Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93(4):1423–1435. doi:10.1007/s00253-011-3762-9

    Article  CAS  Google Scholar 

  9. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69(1):12. doi:10.1128/Mmbr.69.1.12-50.2005

    Article  CAS  Google Scholar 

  10. Klamt S, Stelling J, Ginkel M, Gilles ED (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Biogeosciences 19(2):261–269. doi:10.1093/bioinformatics/19.2.261

    CAS  Google Scholar 

  11. Terzer M, Stelling J (2006) Accelerating the computation of elementary modes using pattern trees algorithms in bioinformatics. In: Bücher P, Moret B (eds) Lecture notes in computer science. Springer, Heidelberg, pp 333–343. doi:10.1007/11851561_31

    Google Scholar 

  12. Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Biogeosciences 24(19):2229–2235. doi:10.1093/bioinformatics/btn401

    CAS  Google Scholar 

  13. Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montero F, Schuster S (1999) METATOOL: for studying metabolic networks. Biogeosciences 15(3):251–257. doi:10.1093/bioinformatics/15.3.251

    CAS  Google Scholar 

  14. Carlson R, Srienc F (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnol Bioeng 85(1):1–19. doi:10.1002/bit.10812

    Article  CAS  Google Scholar 

  15. Carlson RP (2007) Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Biogeosciences 23(10):1258–1264. doi:10.1093/bioinformatics/btm082

    CAS  Google Scholar 

  16. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008. http://www.nature.com/msb/journal/v2/n1/suppinfo/msb4100050_S1.html

  17. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  Google Scholar 

  18. Pósfai G, Koob MD, Kirkpatrick HA, Blattner FR (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179(13):4426–4428

    Google Scholar 

  19. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  20. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60. doi:10.1016/s0167-7799(98)01290-6

    Article  CAS  Google Scholar 

  21. El-Mansi M, Stephanopoulos G, Carlson RP (2011) Flux control analysis and stoichiometric network modeling: basic principles and industrial applications. In: El-Mansi M, Bryce CFA, Demian AL, Allman AR (eds) Fermentation microbiology and biotechnology. CRC/Taylor and Francis Inc., Oxford, UK, pp 150–190

    Google Scholar 

  22. Hamilton M (2003) The biofilm laboratory step-by-step protocols for experimental design, analysis, and data interpretation. Cytergy Publishing, Bozeman, MT

    Google Scholar 

  23. Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Meth 44(2):121–129. doi:S0167701200002414 [pii]

    Article  CAS  Google Scholar 

  24. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34(2):474–478

    Article  CAS  Google Scholar 

  25. Revsbech NP, Jorgensen BB (1986) Microelectrodes – their use in microbial ecology. Adv Microb Ecol 9:293–352

    Article  Google Scholar 

  26. Beyenal H, Lewandowski Z, Harkin G (2004) Quantifying biofilm structure: facts and fiction. Biofouling 20(1):1–23. doi:10.1080/0892701042000191628

    CAS  Google Scholar 

  27. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491

    Article  CAS  Google Scholar 

  28. Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Institute of Health grant (EB006532 and P20 RR024237) and the National Science Foundation-Integrative Graduate Education and Research Training (IGERT) Program (DGE 0654336) for support to H.C.B. The authors would also like to acknowledge Alissa Bleem, Reed Taffs, James Folsom, Trevor Zuroff, and Betsey Pitts for their efforts associated with developing and iterating on the methods described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross P. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bernstein, H.C., Carlson, R.P. (2014). Design, Construction, and Characterization Methodologies for Synthetic Microbial Consortia. In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics