Skip to main content

Coupled Climate-Economy-Ecology-Biosphere Modeling: A Dynamic and Stochastic Approach

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Much of the work on climate change and its economic impacts so far has been done on the basis of equilibrium theories, in the climate as well as the economic realm. Increasingly, though, the climate sciences community has come to realize that natural climate variability is an important issue in assessing climate evolution on time scales of years-to-decades. Somewhat less broad and consensual is the incipient use of nonequilibrium, stochastic-dynamic models in the macroeconomic literature. The purpose of this chapter is to cover some of the advances in the recent climate and economic literature on the use of such models to address climate change mitigation and adaptation. The chapter stresses the importance of taking into account the nonlinearities in both the climate and economic system, as well as in the coupling. Some of these issues are illustrated by reviewing work on a coupled climate–economy–biosphere (CoCEB) model with random shocks, designated as CoCEB-S. This review emphasizes the latter model’s results on the comparative efficacy of approaches to abatement – such as low-carbon technology, deforestation reduction, or carbon capture and storage – and it uses the evolution of the inclusive wealth index as its key policy evaluation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acemoglu D, Restrepo P (2020) Robots and jobs: evidence from US labor markets. J Polit Econ 128(6):2188–2244. https://doi.org/10.1086/705716

    Article  Google Scholar 

  • Ackerman F, Stanton EA, Hope C, Alberth S (2009) Did the Stern review underestimate US and global climate damages? Energy Policy 37(7):2717–2721. https://doi.org/10.1016/j.enpol.2009.03.011

    Article  Google Scholar 

  • Ackerman F, Stanton EA, Bueno R (2010) Fat tails, exponents, extreme uncertainty: simulating catastrophe in DICE. Ecol Econ 69(8):1657–1665. https://doi.org/10.1016/j.ecolecon.2010.03.013

    Article  Google Scholar 

  • Akaev AA, Rudskoi AI (2017) Economic potential of breakthrough technologies and its social consequences. In: Devezas T, Sarygulov A, Leitão JT (eds) Entrepreneurship and structural change in the new digital landscape. Springer International Publishing, Cham, pp 13–41. https://doi.org/10.1007/978-3-319-49604-72

    Chapter  Google Scholar 

  • Akaev AA, Sadovnichii VA (2010) Mathematical model of population dynamics with the world population size stabilizing about a stationary level. Dokl Math 82(3):978–981

    Article  MATH  Google Scholar 

  • Akayev A (2015) Stabilization of earth’s climate in the 21st century by the stabilization of per capita consumption. In: Bernard L, Semmler W, Akayev A (eds) The Oxford handbook of the macroeconomics of global warming. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199856978.013.0021

  • Akayev A, Rudskoi A, Devezas T (2018) Digital economy and the models of income distribution in the society. SHS Web of Conferences 44:00005. https://doi.org/10.1051/shsconf/20184400005

    Article  Google Scholar 

  • Alessio SM (2015) Digital signal processing and spectral analysis for scientists: concepts and applications. Springer Science & Business Media. https://doi.org/10.1007/978-3-319-25468-5

  • Allen MR (2003) Liability for climate change. Nature 421(6926):891–892

    Article  Google Scholar 

  • Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9:3373–3404

    Article  Google Scholar 

  • Ambec S, Lanoie P (2008) Does it pay to be green? A systematic overview. Acad Manag Perspect 22(4):45–62

    Article  Google Scholar 

  • Arnold VI (1983/2012) Geometrical methods in the theory of ordinary differential equations. Springer Science & Business Media New York; first Russian edition 1978

    Google Scholar 

  • Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290

    Article  MathSciNet  MATH  Google Scholar 

  • Artis MJ, Zhang W (1997) International business cycles and the ERM: is there a European business cycle? Int J Financ Econ 2(1):1–16

    Article  Google Scholar 

  • Ashwin P, Wieczorek S, Vitolo R, Cox P (2012) Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos Trans R Soc A Math Phys Eng Sci 370(1962):1166–1184

    Article  Google Scholar 

  • Aspromourgos T (1986) On the origins of the term ‘neoclassical’. Camb J Econ 10(3):265–270

    Article  Google Scholar 

  • Bain A, Crisan D (2008) Fundamentals of stochastic filtering. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Barnett M, Brock W, Hansen LP (2020) Pricing uncertainty induced by climate change. Rev Financ Stud 33(3):1024–1066. https://doi.org/10.1093/rfs/hhz144

    Article  Google Scholar 

  • Barro RJ, Sala-i-Martin XI (2003) Economic growth, 2nd edn. MIT Press, Cambridge, MA/London

    MATH  Google Scholar 

  • Bayram M, Partal T, Buyukoz GO (2018) Numerical methods for simulation of stochastic differential equations. Advances in Difference Equations 2018(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Bengtsson L, Ghil M, Källén E (1981) Dynamic meteorology: data assimilation methods. Springer, New York

    Book  MATH  Google Scholar 

  • Benson C, Clay E (2004) Understanding the economic and financial impacts of natural disasters. The World Bank, Washington, DC

    Book  Google Scholar 

  • Bertuglia CS, Vaio F (2005) Nonlinearity, chaos, and complexity: the dynamics of natural and social systems. Oxford University Press, New York

    MATH  Google Scholar 

  • Blanchard O, Perotti R (2002) An empirical characterization of the dynamic effects of changes in government spending and taxes on output. Q J Econ 117(4):1329–1368. https://doi.org/10.1162/003355302320935043

    Article  MATH  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366(1):1–101. https://doi.org/10.1016/s0370-1573(02)00137-0

    Article  MathSciNet  MATH  Google Scholar 

  • Bódai T, Tél T (2012) Annual variability in a conceptual climate model: snapshot attractors, hysteresis in extreme events, and climate sensitivity. Chaos: An Interdisciplinary Journal of Nonlinear Science 22(2):023110. https://doi.org/10.1063/1.3697984

    Article  MathSciNet  Google Scholar 

  • Bódai T, Lucarini V, Lunkeit F (2020) Can we use linear response theory to assess geoengineering strategies? Chaos: An Interdisciplinary Journal of Nonlinear Science 30(2):023124

    Article  MathSciNet  Google Scholar 

  • Bouchaud JP (2013) Crises and collective socio-economic phenomena: simple models and challenges. J Stat Phys 151(3–4):567–606. https://doi.org/10.1007/s10955-012-0687-3

    Article  MathSciNet  MATH  Google Scholar 

  • Bovari E, Giraud G, Isaac FM (2018) Coping with collapse: a stock-flow consistent monetary macrodynamics of global warming. Ecol Econ 147:383–398. https://doi.org/10.1016/j.ecolecon.2018.01.034

    Article  Google Scholar 

  • Bowen A (2014) The scope for “green growth” and a new technological revolution. In: The global development of policy regimes to combat climate change. World Scientific, pp 133–157. https://doi.org/10.1142/97898145518540006

  • Branke J, Branke J, Deb K, Miettinen K, Slowiński R (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer Science & Business Media, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Bretschger L, Smulders S (2006) Sustainable resource use and economic dynamics. Environ Resour Econ 36(1):1–13. https://doi.org/10.1007/s10640-006-9043-x

    Article  Google Scholar 

  • Brock W, Mirman L (1972) Optimal growth under uncertainty. J Econ Theory 4:479–513

    Article  Google Scholar 

  • Buchholz W, Markandya A, Rübbelke D, Vögele S (eds) (2020) Ancillary benefits of climate policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-30978-7

  • Burns AF, Mitchell WC (1946) Measuring business cycles. Technical report, National Bureau of Economic Research

    Google Scholar 

  • Butler MP, Reed PM, Fisher-Vanden K, Keller K, Wagener T (2014) Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environ Model Softw 59:10–29

    Article  Google Scholar 

  • Cai Y, Lontzek TS (2019) The social cost of carbon with economic and climate risks. J Polit Econ 127(6):2684–2734. https://doi.org/10.1086/701890

    Article  Google Scholar 

  • Carrassi A, Bocquet M, Hannart A, Ghil M (2017) Estimating model evidence using data assimilation. Q J R Meteorol Soc 143(703):866–880

    Article  Google Scholar 

  • de Carvalho M, Rodrigues PC, Rua A (2012) Tracking the US business cycle with a singular spectrum analysis. Econ Lett 114(1):32–35. https://doi.org/10.1016/j.econlet.2011.09.007

    Article  Google Scholar 

  • Charney JG, Arakawa A, Baker DJ, Bolin B, Dickinson RE, Goody RM, Leith CE, Stommel HM, Wunsch CI (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Chavez M, Ghil M, Urrutia-Fucugauchi J (eds) (2015) Extreme events: observations, modeling, and economics, geophysical monographs, vol 214. Wiley, Hoboken

    Google Scholar 

  • Chekroun MD, Simonnet E, Ghil M (2011) Stochastic climate dynamics: random attractors and time-dependent invariant measures. Physica D: Nonlinear Phenomena 240(21):1685–1700. https://doi.org/10.1016/j.physd.2011.06.005

    Article  MathSciNet  MATH  Google Scholar 

  • Chekroun MD, Ghil M, Neelin JD (2018) Pullback attractor crisis in a delay differential ENSO model. In: Tsonis A (ed) Advances in nonlinear geosciences. Springer, Cham, pp 1–33

    Google Scholar 

  • Chen WY (2014) Stochasticity and noise-induced transition of genetic toggle switch. Journal of Uncertainty Analysis and Applications 2(1):1. http://www.juaa-journal.com/content/2/1/1, 38 pp

    Article  Google Scholar 

  • Chiarella C, Flaschel P, Franke R (2005) Foundations for a disequilibrium theory of the business cycle. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G, Fisher-Vanden K, Hourcade JC, Krey V, Kriegler E, Löschel A et al (2014) Assessing transformation pathways. In: Climate change 2014: mitigation of climate change. Cambridge University Press, New York

    Google Scholar 

  • Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Boston

    MATH  Google Scholar 

  • Colon C, Ghil M (2017) Economic networks: heterogeneity-induced vulnerability and loss of synchronization. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(12):126703. https://doi.org/10.1063/1.5017851

    Article  Google Scholar 

  • Colon C, Claessen D, Ghil M (2015) Bifurcation analysis of an agent-based model for predator–prey interactions. Ecol Model 317:93–106

    Article  Google Scholar 

  • CPUNFCCC (2015) Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015, Paris), vol 4

    Google Scholar 

  • Craxton M, Merrick J, Makridis C, Taggart J (2017) On the climate policy implications of substitutability and flexibility in the economy: an in-depth integrated assessment model diagnostic. Technol Forecast Soc Chang 125:289–298. https://doi.org/10.1016/j.techfore.2017.07.003

    Article  Google Scholar 

  • Creamer AE, Gao B (2015) Carbon dioxide capture: an effective way to combat global warming. Springer International Publishing. https://doi.org/10.1007/978-3-319-17010-7

  • Crutzen PJ (2006) The “anthropocene”. In: Earth system science in the Anthropocene. Springer, Berlin/Heidelberg, pp 13–18

    Chapter  Google Scholar 

  • Cuaresma JC (2017) Income projections for climate change research: a framework based on human capital dynamics. Glob Environ Chang 42:226–236. https://doi.org/10.1016/j.gloenvcha.2015.02.012

    Article  Google Scholar 

  • Dafermos Y, Nikolaidi M, Galanis G (2018) Climate change, financial stability and monetary policy. Ecol Econ 152:219–234

    Article  Google Scholar 

  • Dasgupta P, Duraiappah A (2012) Inclusive wealth report 2012: measuring progress toward sustainability, United Nations University, chap 1. Well-being and wealth, pp 13–26

    Google Scholar 

  • Davidson P (1991) Is probability theory relevant for uncertainty? A post Keynesian perspective. J Econ Perspect 5(1):129–143. https://doi.org/10.1257/jep.5.1.129

    Article  Google Scholar 

  • Delmas MA, Nairn-Birch N, Lim J (2015) Dynamics of environmental and financial performance: the case of greenhouse gas emissions. Organ Environ 28(4):374–393

    Article  Google Scholar 

  • Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE et al (2020) Insights from Earth system model initial-condition large ensembles and future prospects. Nat Clim Chang 10:277–286

    Article  Google Scholar 

  • Dijkstra HA, Ghil M (2005) Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Rev Geophys 43(3):RG3002. https://doi.org/10.1029/2002RG000122

    Article  Google Scholar 

  • Drótos G, Bódai T, Tél T (2015) Probabilistic concepts in a changing climate: a snapshot attractor picture. J Clim 28(8):3275–3288

    Article  Google Scholar 

  • Duane GS, Grabow C, Selten F, Ghil M (2017) Introduction to focus issue: synchronization in large networks and continuous media-data, models, and supermodels. Chaos: An Interdisciplinary Journal of Nonlinear Science 27:126601

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560

    Article  MATH  Google Scholar 

  • Epstein JM, Axtell R (1996) Growing artificial societies: social science from the bottom up. Brookings Institution Press

    Google Scholar 

  • Eurostat (2002) Economic portrait of the European Union 2001. Technical report, European Commission, Brussels

    Google Scholar 

  • Farmer JD, Hepburn C, Mealy P, Teytelboym A (2015) A third wave in the economics of climate change. Environ Resour Econ 62(2):329–357

    Article  Google Scholar 

  • Feliks Y, Ghil M, Simonnet E (2004) Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. Journal of Atmospheric Science 61(9):961–981

    Article  Google Scholar 

  • Feliks Y, Ghil M, Simonnet E (2007) Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. Journal of Atmospheric Science 64(1):97–116

    Article  Google Scholar 

  • Flaschel P, Franke R, Semmler W, Day RH et al (1997) Dynamic macroeconomics: instability, fluctuation, and growth in monetary economies. MIT Press, Cambridge, MA

    Google Scholar 

  • Flavin C, Engelman R (2009) The perfect storm. In: State of the world 2009–into a warming world. WW Norton & Company, New York, pp 5–29

    Google Scholar 

  • Ganguly S, Neogi U, Chakrabarti AS, Chakraborti A (2017) Reaction-diffusion equations with applications to economic systems. In: Econophysics and socio-physics: recent progress and future directions. Springer International Publishing, pp 131–144. https://doi.org/10.1007/978-3-319-47705-3_10

  • Ghil M (1976) Climate stability for a sellers-type model. Journal of Atmospheric Science 33:3–20

    Article  MathSciNet  Google Scholar 

  • Ghil M (2001) Hilbert problems for the geosciences in the 21st century. Nonlinear Process Geophys 8:211–222. https://doi.org/10.5194/npg-8-211-2001

    Article  Google Scholar 

  • Ghil M (2015) A mathematical theory of climate sensitivity or, how to deal with both anthropogenic forcing and natural variability? In: Climate change: multidecadal and beyond. World Scientific, pp 31–51. https://doi.org/10.1142/97898145799330002

  • Ghil M (2017) The wind-driven ocean circulation: applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems A 37(1):189–228. https://doi.org/10.3934/dcds.2017008

    Article  MathSciNet  MATH  Google Scholar 

  • Ghil M (2019) A century of nonlinearity in the geosciences. Earth and Space Science 6:1007–1042. https://doi.org/10.1029/2019EA000599

    Article  Google Scholar 

  • Ghil M (2020) Hilbert problems for the climate sciences in the 21st century–20 years later. Nonlinear Process Geophys 27(3):429–451

    Article  Google Scholar 

  • Ghil M, Childress S (1987/2012) Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics. Springer Science+Business Media, Berlin/Heidelberg, reissued in pdf, 2012

    Google Scholar 

  • Ghil M, Lucarini V (2020) The physics of climate variability and climate change. Rev Mod Phys 92(3):035002. https://doi.org/10.1103/RevModPhys.92.035002

    Article  MathSciNet  Google Scholar 

  • Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in meteorology and oceanography. Adv Geophys 33:141–266

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):31–341. https://doi.org/10.1029/2000RG000092

    Article  Google Scholar 

  • Ghil M, Chekroun MD, Simonnet E (2008) Climate dynamics and fluid mechanics: natural variability and related uncertainties. Physica D: Nonlinear Phenomena 237(14–17):2111–2126. https://doi.org/10.1016/j.physd.2008.03.036

    Article  MathSciNet  MATH  Google Scholar 

  • Ghil M, Yiou P, Hallegatte S, Malamud BD, Naveau P, Soloviev A, Friederichs P, Keilis-Borok V, Kondrashov D, Kossobokov V, Mestre O, Nicolis C, Rust HW, Shebalin P, Vrac M, Witt A, Zaliapin I (2011) Extreme events: dynamics, statistics and prediction. Nonlinear Process Geophys 18(3):295–350. https://doi.org/10.5194/npg-18-295-2011

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-Ocean dynamics. Academic, New York

    Google Scholar 

  • Gladwell M (2000) The tipping point: how little things can make a big difference. Little Brown, Boston

    Google Scholar 

  • Gordon RB, Koopmans TC, Nordhaus WD, Skinner BJ (1987) Toward a new iron age?: quantitative modeling of resource exhaustion. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Greiner A, Semmler W (2008) The global environment, natural resources, and economic growth. Oxford University Press, New York

    Book  Google Scholar 

  • Gritsun A, Branstator G (2007) Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J Atmos Sci 64(7):2558–2575. https://doi.org/10.1175/JAS3943.1

    Article  Google Scholar 

  • Groth A, Ghil M (2011) Multivariate singular spectrum analysis and the road to phase synchronization. Phys Rev E 84(3):036206. https://doi.org/10.1103/PhysRevE.84.036206

    Article  Google Scholar 

  • Groth A, Ghil M (2015) Monte Carlo singular spectrum analysis (SSA) revisited: detecting oscillator clusters in multivariate datasets. J Clim 28(19):7873–7893. https://doi.org/10.1175/JCLI-D-15-0100.1

    Article  Google Scholar 

  • Groth A, Ghil M (2017) Synchronization of world economic activity. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(12):127002

    Article  MathSciNet  Google Scholar 

  • Groth A, Feliks Y, Kondrashov D, Ghil M (2017) Interannual variability in the North Atlantic ocean’s temperature field and its association with the wind stress forcing. J Clim 30(7):2655–2678

    Article  Google Scholar 

  • Groth A, Dumas P, Ghil M, Hallegatte S (2015a) Impacts of natural disasters on a dynamic economy. In: Chavez M, Ghil M, Urrutia-Fucugauchi J (eds) Extreme events: observations, modeling and economics, Geophysical monographs, vol 214. Wiley Online Library, Hoboken., chap 19, pp 343–359

    Chapter  Google Scholar 

  • Groth A, Ghil M, Hallegatte S, Dumas P (2015b) The role of oscillatory modes in US business cycles. OECD Journal: Journal of Business Cycle Measurement and Analysis 2015(1):63–81

    Google Scholar 

  • Grüne L, Kloeden PE (2001) Pathwise approximation of random ordinary differential equations. BIT Numer Math 41(4):711–721. https://doi.org/10.1023/a:1021995918864

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields, 2nd edn. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Hallegatte S (2005) The long time scales of the climate–economy feedback and the climatic cost of growth. Environmental Modeling & Assessment 10(4):277–289

    Article  Google Scholar 

  • Hallegatte S (2016) Natural disasters and climate change: an economic perspective. Springer

    Google Scholar 

  • Hallegatte S, Ghil M (2008) Natural disasters impacting a macroeconomic model with endogenous dynamics. Ecol Econ 68(1–2):582–592. https://doi.org/10.1016/j.ecolecon.2008.05.022

    Article  Google Scholar 

  • Hallegatte S, Hourcade JC, Dumas P (2007) Why economic dynamics matter in assessing climate change damages: illustration on extreme events. Ecol Econ 62(2):330–340. https://doi.org/10.1016/j.ecolecon.2006.06.006

    Article  Google Scholar 

  • Hallegatte S, Ghil M, Dumas P, Hourcade JC (2008) Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics. J Econ Behav Organ 67(1):57–77. https://doi.org/10.1016/j.jebo.2007.05.001

    Article  Google Scholar 

  • Han X, Kloeden PE (2017) Random ordinary differential equations and their numerical solution. Springer Singapore. https://doi.org/10.1007/978-981-10-6265-0

  • Hannart A, Carrassi A, Bocquet M, Ghil M, Naveau P, Pulido M, Ruiz J, Tandeo P (2016a) Dada: data assimilation for the detection and attribution of weather and climate-related events. Clim Chang 136(2):155–174

    Article  Google Scholar 

  • Hannart A, Pearl J, Otto FEL, Naveau P, Ghil M (2016b) Causal counterfactual theory for the attribution of weather and climate-related events. Bull Am Meteorol Soc 97(1):99–110

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models. Part I: theory. Tellus 28:473–485. https://doi.org/10.1111/j.2153-3490.1976.tb00696.x

    Article  Google Scholar 

  • Hasselmann K (2010) The climate change game. Nat Geosci 3(8):511–512. https://doi.org/10.1038/ngeo919

    Article  Google Scholar 

  • Hassler J, Krusell P (2018) Environmental macroeconomics: the case of climate change. In: Dasgupta P, Pattanayak SK, Smith VK (eds) Handbook of environmental economics, Handbook of environmental economics, vol 4. Elsevier, chap 8, pp 333–394. https://doi.org/10.1016/bs.hesenv.2018.08.003

  • Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38(1):L10605. https://doi.org/10.1029/2011GL047208

    Article  Google Scholar 

  • Hayek FA (1941/2007) The pure theory of capital; first published by Macmillan & Co. in 1941, The collected works of F. A. Hayek, vol 12. University of Chicago Press, Ed. White, L. H

    Google Scholar 

  • Held IM (2005) The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1614. https://doi.org/10.1175/bams-86-11-1609

    Article  Google Scholar 

  • Held IM, Suarez MJ (1974) Simple albedo feedback models of the ice caps. Tellus 26:613–629

    Article  Google Scholar 

  • von der Heydt AS, Dijkstra HA, van de Wal RSW, Caballero R, Crucifix M, Foster GL, Huber M, Köhler P, Rohling E, Valdes PJ, Ashwin P, Bathiany S, Berends T, van Bree LGJ, Ditlevsen P, Ghil M, Haywood AM, Katzav J, Lohmann G, Lohmann J, Lucarini V, Marzocchi A, Pälike H, Baroni IR, Simon D, Sluijs A, Stap LB, Tantet A, Viebahn J, Ziegler M (2016) Lessons on climate sensitivity from past climate changes. Current Climate Change Reports 2(4):148–158. https://doi.org/10.1007/s40641-016-0049-3

    Article  Google Scholar 

  • Hilbert D (1900) Mathematische Probleme. Göttinger Nachrichten pp 253–297, see also Archiv d. Mathematik u. Physik, 3 (1), 44–63 and 213–237, 1901; French transl. by M. L. Laugel, Sur les probèmes futurs des mathématiques, in Comptes Rendus du 2ème Congrès International des Mathématiciens, 58–114, Gauthier-Villars, Paris, 1902; Engl. transl. by M. Winton Newson, Bull. Amer. Math. Soc., 8, 437–479, 1902

    Google Scholar 

  • Hillerbrand R, Ghil M (2008) Anthropogenic climate change: scientific uncertainties and moral dilemmas. Physica D: Nonlinear Phenomena 237(14–17):2132–2138

    Article  MATH  Google Scholar 

  • Hodrick RJ, Prescott EC (1997) Postwar US business cycles: an empirical investigation. J Money, Credit, Bank 29:1–16

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, Brown S, Camilloni IA, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Hope CW, Payne AJ, Pörtner HO, Seneviratne SI, Thomas A, Warren R, Zhou G (2019) The human imperative of stabilizing global climate change at 1.5°C. Science 365(6459). https://doi.org/10.1126/science.aaw6974

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (2002) On the initiation of a snowball Earth. Science 281:1342

    Article  Google Scholar 

  • Hoover K (1992) The new classical macroeconomics. Edward Elgar Publishing; see also Kevin D. Hoover, The new classical macroeconomics, in The Library of Economics and Liberty. https://tinyurl.com/u575thy

  • Hope C (2006) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC’s five reasons for concern. Integr Assess 6(1):19–56

    Google Scholar 

  • Hughes BB (2019) International futures: building and using global models. Academic, Boston

    Google Scholar 

  • Hume D (1748) An enquiry concerning human understanding. Wikisource. https://tinyurl.com/yyado224

  • Ikefuji M, Laeven RJA, Magnus JR, Muris C (2020a) DICE simplified. Environ Model Assess. https://doi.org/10.1007/s10666-020-09738-2

  • Ikefuji M, Laeven RJ, Magnus JR, Muris C (2020b) Expected utility and catastrophic risk in a stochastic economy-climate model. J Econ 214(1):110–129. https://doi.org/10.1016/j.jeconom.2019.05.007

    Article  MathSciNet  MATH  Google Scholar 

  • Imkeller P, Schmalfuss B (2001) The conjugacy of stochastic and random differential equations and the existence of global attractors. J Dyn Diff Equat 13(2):215–249. https://doi.org/10.1023/a:1016673307045

    Article  MathSciNet  MATH  Google Scholar 

  • IPCC (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge. 365+xxxix pp

    Google Scholar 

  • IPCC (2000) IPCC special report on emissions scenarios (SRES). Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2014a) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781107415324

    Book  Google Scholar 

  • IPCC (2014b) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva. 151 pp

    Google Scholar 

  • IPCC (2015) Climate change 2014: mitigation of climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Masson-Delmotte T, Zhai P, Pörtner H, Roberts D, Skea J, Shukla P, Pirani A, Moufouma-Okia W, Péan C, Pidcock R et al (eds) Global warming of 1.5°C. An IPCC special report. World Meteorological Organization, Geneva

    Google Scholar 

  • Jiang S, Jin FF, Ghil M (1995) Multiple equilibria and aperiodic solutions in a wind-driven double-gyre, shallow-water model. J Phys Oceanogr 25:764–786

    Article  Google Scholar 

  • Jordan DW, Smith P (2007) Nonlinear ordinary differential equations – an introduction for scientists and engineers, 2nd edn. Oxford University Press, Oxford/New York

    MATH  Google Scholar 

  • Juglar C (1862) Des Crises commerciales et leur retour périodique en France, en Angleterre, et aux Etats Unis. Guillaumin, Paris

    Google Scholar 

  • Jumbri IA, Managi S (2020) Inclusive wealth with total factor productivity: global sustainability measurement. Global Sustainability 3(e5):1–16. https://doi.org/10.1017/sus.2020.1

    Article  Google Scholar 

  • Kahn J, Rivas A (2009) The sustainable economic development of traditional peoples. In: RPF H, Pressman S, Spash CL (eds) Post Keynesian and ecological economics: confronting environmental issues. Edward Edgar Publishing, Cheltenham/Northampton., chap 13, pp 256–278

    Google Scholar 

  • Kalecki M (1935) A macrodynamic theory of business cycles. Econometrica 3:327–344

    Article  MATH  Google Scholar 

  • Kalkuhl M, Edenhofer O, Lessmann K (2012) Learning or lock-in: optimal technology policies to support mitigation. Resour Energy Econ 34(1):1–23. https://doi.org/10.1016/j.reseneeco.2011.08.001

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kato H (2016) An empirical analysis of population and technological progress. Springer Japan. https://doi.org/10.1007/978-4-431-54959-8

  • Kaya Y, Yokoburi K (1997) Environment, energy, and economy: strategies for sustainability. United Nations University Press, Tokyo

    Google Scholar 

  • Kelly DL, Kolstad CD (1996) The climate change footprint: will we see it before it is upon us? In: Nakićenović N, Nordhaus WD, Richels R, Toth FL (eds) Climate change: integrating science, economics, and policy, vol 19. IIASA, Laxenburg

    Google Scholar 

  • Keynes JM (1936/2018) The general theory of employment, interest, and money; first published by Palgrave Macmillan in 1936. Springer

    Google Scholar 

  • Kimball MS (1995) The quantitative analytics of the basic neomonetarist model. J Money Credit Bank 27:1241–1277

    Article  Google Scholar 

  • Kitchin J (1923) Cycles and trends in economic factors. Rev Econ Stat 5(1):10–16. https://doi.org/10.2307/1927031

    Article  Google Scholar 

  • Kondratyev KY, Krapivin VF, Varostos CA (2006) Natural disasters as interactive components of global ecodynamics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Kose MA, Otrok CM, Whiteman CH (2003) International business cycles: world, region, and country-specific factors. Am Econ Rev 93(4):1216–1239. https://doi.org/10.1257/000282803769206278

    Article  Google Scholar 

  • Kraemer RA, Blobel D, von Raggamby A, Knoblauch D (2008) Demographic change and sustainability: a generational balance. In: Demographic change and intergenerational justice. Springer, Berlin/Heidelberg, pp 99–125. https://doi.org/10.1007/978-3-540-77084-86

    Chapter  Google Scholar 

  • Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29(1):255–284

    Article  MATH  Google Scholar 

  • Kydland FE, Prescott EC (1982) Time to build and aggregate fluctuations. Econometrica 50(6):1345–1370. https://doi.org/10.2307/1913386

    Article  MATH  Google Scholar 

  • Lean J, Rottman G, Harder J, Kopp G (2005) SORCE contributions to new understanding of global change and solar variability. Sol Phys 230(1–2):27–53. https://doi.org/10.1007/s11207-005-1527-2

    Article  Google Scholar 

  • Leith CE (1975) Climate response and fluctuation dissipation. J Atmos Sci 32(10):2022–2026. https://doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105:1786–1793. https://doi.org/10.1073/pnas.0705414105

    Article  MATH  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171–180

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz EN, Emanuel KA (1998) Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci 55:399–414

    Article  Google Scholar 

  • Lucarini V (2008) Response theory for equilibrium and non-equilibrium statistical mechanics: causality and generalized Kramers-Kronig relations. J Stat Phys 131:543–558. https://doi.org/10.1007/s10955-008-9498-y

    Article  MathSciNet  MATH  Google Scholar 

  • Lucarini V, Gritsun A (2020) A new mathematical framework for atmospheric blocking events. Clim Dyn 54(1):575–598

    Article  Google Scholar 

  • Lucarini V, Faranda D, de Freitas ACGMM, de Freitas JMM, Holland M, Kuna T, Nicol M, Todd M, Vaienti S (2016) Extremes and recurrence in dynamical systems. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Malinvaud E (1977) The theory of unemployment reconsidered. Blackwell, Oxford

    Google Scholar 

  • Managi S, Kumar P (2018) Inclusive wealth report 2018. Taylor & Francis

    Google Scholar 

  • Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23(1):17–34

    Article  Google Scholar 

  • Marconi UMB, Puglisi A, Rondoni L, Vulpiani A (2008) Fluctuation-dissipation: response theory in statistical physics. Phys Rep 461:111

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Chang 109(1–2):59–76. https://doi.org/10.1007/s10584-011-0150-5

    Article  Google Scholar 

  • May RM, Levin SA, Sugihara G (2008) Complex systems: ecology for bankers. Nature 451(7181):893–895

    Article  Google Scholar 

  • Maziarz M (2017) Ethics, uncertainty, and macroeconomics. Annales Etyka w Zyciu Gospodarczym 20(4). https://doi.org/10.18778/1899-2226.20.4.04

  • Mazzoli M, Morini M, Terna P (2019) Rethinking macroeconomics with endogenous market structure. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Earth 4(20)

    Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452(7184):206

    Article  Google Scholar 

  • Morgan MG, Vaishnav P, Dowlatabadi H, Azevedo IL (2017) Rethinking the social cost of carbon dioxide. Issues Sci Technol 33(4):43–50

    Google Scholar 

  • Motesharrei S, Rivas J, Kalnay E (2014) Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol Econ 101:90–102

    Article  Google Scholar 

  • Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, Cahalan RF, Cane MA, Colwell RR, Feng K, Franklin RS et al (2016) Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. Natl Sci Rev 3(4):470–494

    Google Scholar 

  • Neelin JD, Bracco A, Luo H, McWilliams JC, Meyerson JE (2010) Considerations for parameter optimization and sensitivity in climate models. Proc Natl Acad Sci 107(50):21349–21354

    Article  Google Scholar 

  • Nilsson A, Hansla A, Heiling JM, Bergstad CJ, Martinsson J (2016) Public acceptability towards environmental policy measures: value-matching appeals. Environ Sci Pol 61:176–184. https://doi.org/10.1016/j.envsci.2016.04.013

    Article  Google Scholar 

  • Nordhaus W (2014) Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J Assoc Environ Resour Econ 1(1/2):273–312. https://doi.org/10.1086/676035

    Article  Google Scholar 

  • Nordhaus WD (2013) The climate casino: risk, uncertainty, and economics for a warming world. Yale University Press, New Haven/London

    Google Scholar 

  • North GR (1975) Analytical solution to a simple climate model with diffusive heat transport. Journal of Atmospheric Science 32:1301–1307

    Article  Google Scholar 

  • Norton DF (1999) Hume, David. In: Audi R (ed) Cambridge dictionary of philosophy, 2nd edn. Cambridge University Press, New York, pp 398–403

    Google Scholar 

  • Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129

    Article  Google Scholar 

  • Ogutu KBZ, D’Andrea F, Ghil M, Nyandwi C (2017a) Coupled climate-economy-biosphere (CoCEB) model – part 1: abatement efficacy of low-carbon technologies. Technical report, Chair Energy and Prosperity, Paris, France. https://tinyurl.com/yxdpqtbg

  • Ogutu KBZ, D’Andrea F, Ghil M (2017b) Coupled climate-economy-biosphere (CoCEB) model – part 2: combining deforestation control with carbon capture and storage technologies. Technical report, Chair Energy and Prosperity, Paris, France, https://tinyurl.com/yywrzptk

  • Ogutu KBZ, D’Andrea F, Groth A, Ghil M (2020) Coupled climate-economy-ecology (CoCEB) modeling: a dynamic approach. Technical report, SSRN. https://doi.org/10.2139/ssrn.3697299., http://ssrn.com/abstract=3697299

  • Pareto V (1919) Manuale di Economia Politica, con una Introduzione alla Scienza Sociale. Società Editrice Libraria, Milano

    Google Scholar 

  • Pearl J (2009a) Causal inference in statistics: an overview. Statistics Surveys 3:96–146. https://doi.org/10.1214/09-SS057

    Article  MathSciNet  MATH  Google Scholar 

  • Pearl J (2009b) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Pedlosky J (1996) Ocean circulation theory. Springer, New York

    Book  MATH  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pindyck RS (2013) Climate change policy: what do the models tell us? J Econ Lit 51(3):860–872

    Article  Google Scholar 

  • Popp D (2004) ENTICE: endogenous technological change in the DICE model of global warming. J Environ Econ Manag 48(1):742–768. https://doi.org/10.1016/j.jeem.2003.09.002

    Article  MATH  Google Scholar 

  • Popper K (2005) The logic of scientific discovery. Routledge. Original German: Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft, 1935; first English edition 1959

    Google Scholar 

  • Porter ME, Van der Linde C (1995) Toward a new conception of the environment-competitiveness relationship. J Econ Perspect 9(4):97–118

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32(23). https://doi.org/10.1029/2005GL023655

  • Ramsey FP (1928) A mathematical theory of saving. Econ J 38(152):543–559

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1–2):33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Richardson K, Steffen W, Liverman D (2011) Climate change: global risks, challenges and decisions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Romer D (2011) Real-business-cycle theory. In: Advanced macroeconomics, 4th edn. McGraw-Hill, New York, pp 189–237

    Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807. https://doi.org/10.1103/PhysRevLett.76.1804

    Article  MATH  Google Scholar 

  • Ruelle D (1998) General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys Lett A 245:220–224

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle D (2009) A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22:855–870

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models, vol 1. Wiley Online Library, Hoboken

    MATH  Google Scholar 

  • Saltzman B (2001) Dynamical paleoclimatology: generalized theory of global climate change. Academic, New York

    Google Scholar 

  • Samuelson PA (1939) A synthesis of the principle of acceleration and the multiplier. J Polit Econ 47:786–797

    Article  Google Scholar 

  • Samuelson PA (1971) Generalized predator-prey oscillations in ecological and economic equilibrium. Proc Natl Acad Sci 68(5):980–983. https://doi.org/10.1073/pnas.68.5.980

    Article  MathSciNet  MATH  Google Scholar 

  • Särkkä S, Solin A (2019) Applied stochastic differential equations. Cambridge University Press. https://doi.org/10.1017/9781108186735

  • Schneider SH, Dickinson RE (1974) Climate modelling. Rev Geophys Space Phys 25:447–493

    Article  Google Scholar 

  • Schucht S, Colette A, Rao S, Holland M, Schöpp W, Kolp P, Klimont Z, Bessagnet B, Szopa S, Vautard R, Brignon JM, Rouïl L (2015) Moving towards ambitious climate policies: monetised health benefits from improved air quality could offset mitigation costs in europe. Environ Sci Pol 50:252–269. https://doi.org/10.1016/j.envsci.2015.03.001

    Article  Google Scholar 

  • Schwalm CR, Glendon S, Duffy PB (2020) RCP8. 5 tracks cumulative CO2 emissions. Proc Natl Acad Sci 117(33):19656–19657

    Article  Google Scholar 

  • Sella L, Vivaldo G, Groth A, Ghil M (2016) Economic cycles and their synchronization: a comparison of cyclic modes in three European countries. Journal of Business Cycle Research 12(1):25–48

    Article  Google Scholar 

  • Shiogama H, Stone D, Emori S, Takahashi K, Mori S, Maeda A, Ishizaki Y, Allen MR (2016) Predicting future uncertainty constraints on global warming projections. Sci Rep 6(1):18903. https://doi.org/10.1038/srep18903

    Article  Google Scholar 

  • Siddiqi L (2020) Signalling sincerity in stakeholder capitalism. LSE Business Review. https://tinyurl.com/y47h7h4x

  • Simonnet E, Ghil M, Dijkstra HA (2005) Homoclinc bifurcations in the quasi-geostrophic double-gyre circulation. J Mar Res 63:931–956

    Article  Google Scholar 

  • Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94. https://doi.org/10.2307/1884513

    Article  Google Scholar 

  • Sosis R, Wildman WJ, Bulbulia J, Schjoedt U (2017) Hilbert problems in the scientific study of religion. Religion, Brain & Behavior 7(4):277–278

    Article  Google Scholar 

  • Stern N (2007) The economics of climate change. Cambridge University Press. https://doi.org/10.1017/CBO9780511817434

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 2:244–230

    Google Scholar 

  • Stone DA, Allen MR (2005) The end-to-end attribution problem: from emissions to impacts. Clim Chang 71(3):303–318

    Article  Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdiscip Rev Clim Chang 1(2):192–211

    Article  Google Scholar 

  • Strand JL (1970) Random ordinary differential equations. Journal of Differential Equations 7(3):538–553. https://doi.org/10.1016/0022-0396(70)90100-2

    Article  MathSciNet  MATH  Google Scholar 

  • Summers LH (1997) Some skeptical observations on real business cycle theory. In: Snowdon B, Vane HR (eds) A macroeconomics reader. Routledge, London/New York, pp 389–395

    Google Scholar 

  • Süssmuth B (2002) National and supranational business cycles (1960–2000): a multivariate description of central G7 and Euro15 NIPA aggregates. Working Paper 658, CESifo, University of Munich and ifo Institute, Munich, Germany

    Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109(1–2):77–94. https://doi.org/10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York

    Google Scholar 

  • Tol SJR (2010) Carbon dioxide mitigation. In: Lomborg B (ed) Smart solutions to climate change: comparing costs and benefits. Cambridge University Press, New York, pp 74–105

    Chapter  Google Scholar 

  • Torvanger A (2019) Ancillary benefits of carbon capture and storage. In: Buchholz W, Markandya A, Rübbelke D, Vögele S (eds) Ancillary benefits of climate policy: new theoretical developments and empirical findings. Springer International Publishing, pp 213–225. https://doi.org/10.1007/978-3-030-30978-712

  • UNU-IHDP (2012) Inclusive wealth report 2012: measuring progress toward sustainability. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Den Bergh JCJM (2015) Climate change mitigation: greenhouse gas reduction and biochemicals, Apple Academic Press, Oakville., chap Safe climate policy is affordable: 12 reasons, pp 299–357

    Google Scholar 

  • Veronis G (1963) An analysis of the wind-driven ocean circulation with a limited number of fourier components. J Atmos Sci 20:577–593

    Article  Google Scholar 

  • van Vuuren DP, Carter TR (2013) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122(3):415–429. https://doi.org/10.1007/s10584-013-0974-2

    Article  Google Scholar 

  • van Vuuren DP, Riahi K, Moss R, Edmonds J, Thomson A, Nakicenovic N, Kram T, Berkhout F, Swart R, Janetos A, Rose SK, Arnell N (2012) A proposal for a new scenario framework to support research and assessment in different climate research communities. Glob Environ Chang 22(1):21–35. https://doi.org/10.1016/j.gloenvcha.2011.08.002

    Article  Google Scholar 

  • Wagner G, Weitzman ML (2015) Climate shock: the economic consequences of a hotter planet. Princeton University Press, Princeton

    Book  Google Scholar 

  • Walras L (1874/1954) Elements of pure economics: or the theory of social wealth, 1874; translated from the French “Eléments d’économie politique pure” by W. Jaffé. Homewood, Illinois: R. D. Irwin for the American Economic Association and the Royal Economic Society

    Google Scholar 

  • Wax N (ed) (1954) Selected papers on noise and stochastic processes. Courier Dover Publications

    Google Scholar 

  • West CT, Lenze DG (1994) Modeling the regional impact of natural disaster and recovery: a general framework and an application to Hurricane Andrew. Int Reg Sci Rev 17(2):121–150

    Article  Google Scholar 

  • Winfree AT (1980/2001) The geometry of biological time, vol 12. Springer Science & Business Media, New York

    Book  MATH  Google Scholar 

  • Winkler H (2020) Towards a theory of just transition: a neo-Gramscian understanding of how to shift development pathways to zero poverty and zero carbon. Energy Res Soc Sci 70:101789. https://doi.org/10.1016/j.erss.2020.101789

    Article  Google Scholar 

  • World Bank (2003) Marmara earthquake assessment (English). Techmical report, World Bank, Washington, DC. http://documents.worldbank.org/curated/en/474251468781785112/Turkey-Marmara-earthquake-assessment

Download references

Acknowledgments

Section “Climate System Nonlinearities and Interannual Variability” of this review has benefited from sustained interaction with climate colleagues; many of them have been acknowledged in Ghil (2019) and in Ghil and Lucarini (2020). In connection with sections “Climate Change and its Control: Integrated Thinking” and “Nonequilibrium Economics, Fluctuation–Dissipation, and Synchronization,” it is a great pleasure to thank M. D. Barnett, E. Biffis, W. A. Brock, E. Chavez, C. Chiarella, D. Claessen (RIP), C. Colon, B. Coluzzi, P. Dumas, S. Hallegatte, L. P. Hansen, J.-C. Hourcade, M. Nikolaidi, M. Sadler, L. Sela, P. Terna, G. Vivaldo and G. Weisbuch for all they taught us about economics and its modeling. W. A. Brock, in particular, suggested replacing the GDP in the previous CoCEB model by the inclusive wealth index (IWI) in CoCEB-S. W.-Y. Chen has provided constructive editorial input.

Our perspective on coupled climate–economy–biosphere data analysis and modeling has benefitted from the relevant activities during the Fall Trimester 2019 on “The Mathematics of Climate and the Environment” of the Institut Henri Poincaré (Sorbonne University and CNRS, Paris). We also appreciate the comments of participants in Session A4: Modelling for Low Carbon Economies, at the 8th congress of the International Environmental Modelling and Software Society (iEMSs 2016, Toulouse, France, 12th of July); and the seminars of the Chair Energy and Prosperity of the Fondation du Risque held at Ecole Normale Supérieure (ENS), Paris, France.

The French Embassy in Nairobi has kindly helped support several visits of K. B. Z. O. to the ENS that have greatly advanced the collaboration between the co-authors. This chapter is TiPES contribution # 57; the TiPES (Tipping Points in the Earth System) project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 820970. Work on this chapter has also been supported by the EIT Climate-KIC; EIT Climate-KIC is supported by the European Institute of Innovation & Technology (EIT), a body of the European Union. Support received from the Energy and Prosperity Chair of the Fondation du Risque, Paris, and by Dedan Kimathi University of Technology (DeKUT) is gratefully acknowledged. The Matlab code for the CoCEB model is available upon request.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Random Differential Equations

Random Differential Equations

The most common way of introducing randomness into the governing equations of physical, as well as biological and socioeconomic processes, is that of stochastic differential equations (SDEs). An SDE takes the form

$$ \mathrm{d}x=f\left(x;\mu \right)\mathrm{d}t+\sigma (x)\mathrm{d}W, $$

where μ is a parameter and dW is Brownian motion, with W(t) a Wiener process. If σ is constant, the noise is additive (e.g., Hasselmann 1976), if it depends on x it is multiplicative (Ghil et al. 2008; Chekroun et al. 2011).

Instead, what we used herein is a particular form of a random differential equation (RDE),

$$ \dot{x}\left(t,\omega \right)=f\left(t,x\left(t,\omega \right);\mu \left(\omega \right)\right),\quad x\left(0,\omega \right)={x}_0\left(\omega \right), $$
(16)

where ω denotes a fixed realization of a stochastic process (e.g., Strand 1970). The path wise solutions of the deterministic ODE (16) are then likewise realizations of a stochastic process. Unlike SDEs, which require using the stochastic calculus for their solution (e.g., Särkkä and Solin 2019), RDEs can be formulated and analyzed path wise in terms of the standard deterministic calculus. Still, a strong connection between RDEs and SDEs does exist; see Imkeller and Schmalfuss (2001) for the conjugacy between the two and the existence of global attractors.

It follows from the considerations above that, in principle, an RDE could be solved numerically with well-known deterministic numerical schemes, such as Euler or Runge-Kutta methods. To achieve a low discretization error, such schemes, however, require sufficient smoothness of f, which is normally not the case in the presence of the jumps induced by the stochastic process whose realization is identified by ω. Hence, more sophisticated methods are usually required for achieving good convergence of the numerical solution in discrete time nΔt to the correct one of (16) in continuous time t (Grüne and Kloeden 2001; Han and Kloeden 2017). For simplicity – and given all the approximations involved in our CoCEB-S model Eqs. (14a)–(14h) – we consider here only a one-step numerical Euler–Maruyama (EM) scheme (Bayram et al. 2018), and we use a time step Δt = 1 y.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ogutu, K.B.Z., D’Andrea, F., Groth, A., Ghil, M. (2021). Coupled Climate-Economy-Ecology-Biosphere Modeling: A Dynamic and Stochastic Approach. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics