Skip to main content

Common Methods of Extraction and Determination of Phytomelatonin in Plants

  • Protocol
  • First Online:
ROS Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2798))

  • 128 Accesses

Abstract

The presence of melatonin in plants, called phytomelatonin, has gained great interest in recent years. The determination of phytomelatonin levels in plant extracts for both physiological and plant foodstuff studies requires sophisticated techniques due to the low endogenous levels of this indolic compound with hormonal nature. This chapter presents the most common and advanced techniques in the determination of phytomelatonin, with special emphasis on the techniques of extraction, cleaning, separation, detection, identification, and quantification. Multiple examples and recommendations are presented for a clear overview of the pros and cons of phytomelatonin determinations in plant tissues, seeds, and fruits, mainly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes 1. J Am Chem Soc 80:2587–2587. https://doi.org/10.1021/ja01543a060

    Article  CAS  Google Scholar 

  2. Kolar J, Machackova I, Illnerova H, Prinsen E, van Dongen W, van Onckelen H (1995) Melatonin in higher plant determined by radioimmunoassay and liquid chromatography-mass spectrometry. Biol Rhythm Res 26:406–409

    Google Scholar 

  3. Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by HPLC-MS. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  4. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  5. Hardeland R (2019) Melatonin in the evolution of plants and other phototrophs. Melatonin Res 2:10–36. https://doi.org/10.32794/mr11250029

    Article  Google Scholar 

  6. Hardeland R, Poeggeler B (2003) Non-vertebrate melatonin. J Pineal Res 34:233–241. https://doi.org/10.1034/j.1600-079X.2003.00040.x

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Parrilla MC, Cantos E, Troncoso AM (2009) Analysis of melatonin in foods. J Food Compost Anal 22:177–183. https://doi.org/10.1016/j.jfca.2008.09.009

    Article  CAS  Google Scholar 

  8. Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144. https://doi.org/10.1007/s00425-004-1317-3

    Article  CAS  PubMed  Google Scholar 

  9. Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797. https://doi.org/10.1016/j.tplants.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  10. Socaciu AI, Ionut R, Socaciu MA, Ungur AP, Bârsan M, Chiorean A, Socaciu C, Râjnoveanu AG (2020) Melatonin, an ubiquitous metabolic regulator: functions, mechanisms and effects on circadian disruption and degenerative diseases. Rev Endocr Metab Disord 21:465–478. https://doi.org/10.1007/s11154-020-09570-9

    Article  CAS  PubMed  Google Scholar 

  11. Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150. https://doi.org/10.1111/jpi.12253

    Article  CAS  PubMed  Google Scholar 

  12. Arnao MB, Hernández-Ruiz J (2015) Melatonin: synthesis from tryptophan and its role in higher plant. Amino Acids Higher Plants 390–435. https://doi.org/10.1079/9781780642635.0390

  13. Arnao MB, Hernández-Ruiz J (2021) Regulatory role of melatonin in the redox network of plants and plant hormone relationship in stress. In: Gupta DK, Corpas FJ (eds) Hormones and plant response. Springer, Cham, pp 235–272

    Chapter  Google Scholar 

  14. Arnao MB, Cano A, Hernández-Ruiz J (2022) Phytomelatonin: an unexpected molecule with amazing performances in plants. J Exp Bot. https://doi.org/10.1093/jxb/erac009

  15. Arnao MB, Cano A, Hernández-Ruiz J (2023) Research in plant melatonin: original and current studies. Melatonin Res 6:224–228. https://doi.org/10.32794/mr112500151

    Article  Google Scholar 

  16. Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ (2021) Functions of melatonin during postharvest of horticultural crops. Plant Cell Physiol pcab175. https://doi.org/10.1093/pcp/pcab175

  17. Arnao MB, Hernández-Ruiz J (2019) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res 2:152–168. https://doi.org/10.32794/11250036

    Article  Google Scholar 

  18. Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48. https://doi.org/10.1016/j.tplants.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  19. Arnao MB, Hernández-Ruiz J (2021) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19. https://doi.org/10.1111/plb.13202

    Article  CAS  PubMed  Google Scholar 

  20. Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  21. Arnao MB, Hernández-Ruiz J (2022) Melatonin against environmental plant stressors: a review. Curr Protein Pept Sci 22:413–429. https://doi.org/10.2174/1389203721999210101235422

    Article  CAS  Google Scholar 

  22. Cheng G, Ma T, Deng Z, Gutiérrez Gamboa G, Ge Q, Xu P, Zhang Q, Zhang J, Meng J-F, Reiter R, Fang Y, Sun X (2021) Plant-derived melatonin from food: a gift of nature. Food Funct 12:2829–2849. https://doi.org/10.1039/D0FO03213A

    Article  CAS  PubMed  Google Scholar 

  23. Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot 2014:e815769. https://doi.org/10.1155/2014/815769

    Article  Google Scholar 

  24. Losada M, Cano A, Hernández-Rui̇z J, Arnao MB (2022) Phytomelatonin content in Valeriana officinalis L. and some related phytotherapeutic supplements. Int J Plant Based Pharm 2:176–181. https://doi.org/10.55484/ijpbp.1079005

    Article  Google Scholar 

  25. Arnao MB, Giraldo-Acosta M, Castejón-Castillejo A, Losada-Lorán M, Sánchez-Herrerías P, El Mihyaoui A, Cano A, Hernández-Ruiz J (2023) Melatonin from microorganisms, algae, and plants as possible alternatives to synthetic melatonin. Meta 13:72. https://doi.org/10.3390/metabo13010072

    Article  CAS  Google Scholar 

  26. Arnao MB, Hernández-Ruiz J (2018) The potential of Phytomelatonin as a nutraceutical. Molecules 23:238. https://doi.org/10.3390/molecules23010238

    Article  CAS  PubMed  Google Scholar 

  27. Arnao MB, Hernández-Ruiz J (2018) Phytomelatonin, natural melatonin from plants as a novel dietary supplement: sources, activities and world market. J Funct Foods 48:37–42. https://doi.org/10.1016/j.jff.2018.06.023

    Article  CAS  Google Scholar 

  28. Arnao MB, Hernández-Ruiz J (2009) Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem Anal 20:14–18

    Article  CAS  PubMed  Google Scholar 

  29. Back K, Tan D-X, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437. https://doi.org/10.1111/jpi.12364

    Article  CAS  PubMed  Google Scholar 

  30. Lee K, Lee HY, Back K (2018) Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N -acetylserotonin deacetylase, which catalyzes conversion of N -acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J Pineal Res 64:e12460. https://doi.org/10.1111/jpi.12460

    Article  CAS  Google Scholar 

  31. Zou J, Yu H, Yu Q, Jin X, Cao L, Wang M, Wang M, Ren C, Zhang Y (2021) Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Ind Crop Prod 163:113323

    Article  CAS  Google Scholar 

  32. Reiter RJ, Manchester LC, Tan D (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924. https://doi.org/10.1016/j.nut.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  33. Ye T, Hao YH, Yu L, Shi H, Reiter RJ, Feng YQ (2017) A simple, rapid method for determination of melatonin in plant tissues by UPLC coupled with high resolution orbitrap mass spectrometry. Front Plant Sci 8:64. https://doi.org/10.3389/fpls.2017.00064

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pourhossein M, Shahtaheri SJ, Mazloumi A, Rahimi-Foroushani A, Helmi-Kohneshahri M, Khani HM (2018) Dispersive liquid–liquid microextraction for the determination of salivary melatonin as a biomarker of circadian rhythm. J Anal Chem 73:966–972. https://doi.org/10.1134/S106193481810009X

    Article  CAS  Google Scholar 

  35. Talebianpoor MS, Khodadoust S, Rozbehi A, Akbartabar Toori M, Zoladl M, Ghaedi M, Mohammadi R, Hosseinzadeh AS (2014) Application of optimized dispersive liquid-liquid microextraction for determination of melatonin by HPLC-UV in plasma samples. J Chromatogr B 960:1–7

    Article  CAS  Google Scholar 

  36. Viegas O, Esteves C, Rocha J, Melo A, Ferreira IMPLVO (2021) Simultaneous determination of melatonin and trans-resveratrol in wine by dispersive liquid–liquid microextraction followed by HPLC-FLD. Food Chem 339:128091. https://doi.org/10.1016/j.foodchem.2020.128091

    Article  CAS  PubMed  Google Scholar 

  37. Eremia SAV, Albu C, Radu GL, Ion M (2023) Different extraction approaches for the analysis of melatonin from cabernet sauvignon and Feteasca Neagra wines using a validated HPLC-FL method. Molecules 28:2768. https://doi.org/10.3390/molecules28062768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species: melatonin as growth promoter in plants. J Pineal Res 39:137–142. https://doi.org/10.1111/j.1600-079X.2005.00226.x

    Article  CAS  PubMed  Google Scholar 

  39. Muszynska B, Maslanka A, Sulkowska-Ziaja K, Opoka W, Szopa A (2014) Analysis of 5-methyltryptamine, L-tryptophan, 5-hydroxy-L-tryptophan, and melatonin in the bulbs of garlic by thin-layer chromatographic method coupled with densitometric detection. J Planar Chrom 27:210–216. https://doi.org/10.1556/jpc.27.2014.3.11

    Article  CAS  Google Scholar 

  40. Chen G, Huo Y, Tan D-X, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life Sci 73:19–26. https://doi.org/10.1016/S0024-3205(03)00252-2

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty S, Bhattacharjee P (2020) Ultrasonication-assisted extraction of a phytomelatonin-rich, erucic acid-lean nutraceutical supplement from mustard seeds: an antioxidant synergy in the extract by reductionism. J Food Sci Technol 57:1278–1289. https://doi.org/10.1007/s13197-019-04161-2

    Article  CAS  PubMed  Google Scholar 

  42. Fracassetti D, Vigentini I, Lo Faro AF, De Nisi P, Foschino R, Tirelli A, Orioli M, Iriti M (2019) Assessment of tryptophan, tryptophan Ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods. Food Secur 8:99. https://doi.org/10.3390/foods8030099

    Article  CAS  Google Scholar 

  43. Zhang X, Zhang Y, Zhou Y, Liu Z, Wei B, Feng X (2023) Melatonin in different food samples: recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 163:112272. https://doi.org/10.1016/j.foodres.2022.112272

    Article  CAS  PubMed  Google Scholar 

  44. Reinholds I, Pugajeva I, Radenkovs V, Rjabova J, Bartkevics V (2016) Development and validation of new UPLC-HQOMS method for determination of melatonin in fruits. J Chromatogr Sci 54:977–984. https://doi.org/10.1093/chromsci/bmw030

    Article  CAS  PubMed  Google Scholar 

  45. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701:119–128. https://doi.org/10.1016/j.aca.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  46. Mercolini L, Mandrioli R, Raba J, Raggi MA (2012) Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res 53:21–28

    Article  CAS  PubMed  Google Scholar 

  47. Alessa H, Saber AL, Althakafy JT (2022) Up-to-date studies regarding the determination of melatonin by chromatographic methods. Arch Pharm 355:2100378. https://doi.org/10.1002/ardp.202100378

    Article  CAS  Google Scholar 

  48. Panyatip P, Padumanonda T, Yongram C, Kasikorn T, Sungthong B, Puthongking P (2022) Impact of tea processing on tryptophan, melatonin, phenolic and flavonoid contents in mulberry (Morus alba L.) leaves: quantitative analysis by LC-MS/MS. Molecules 27:4979. https://doi.org/10.3390/molecules27154979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Setyaningsih W, Duros E, Palma M, Barroso CG (2016) Optimization of the ultrasound-assisted extraction of melatonin from red rice (Oryza sativa) grains through a response surface methodology. Appl Acoust 103:129–135

    Article  Google Scholar 

  50. Camel V (2001) Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126:1182–1193. https://doi.org/10.1039/b008243k

    Article  CAS  PubMed  Google Scholar 

  51. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13:105–113. https://doi.org/10.1002/pca.631

    Article  CAS  PubMed  Google Scholar 

  52. Setyaningsih W, Palma M, Barroso CG (2012) A new microwave-assisted extraction method for melatonin determination in rice grains. J Cereal Sci 56:340–346

    Article  CAS  Google Scholar 

  53. Setyaningsih W, Saputro IE, Barbero GF, Palma M, García Barroso C (2015) Determination of melatonin in Rice (Oryza sativa) grains by pressurized liquid extraction. J Agric Food Chem 63:1107–1115. https://doi.org/10.1021/jf505106m

    Article  CAS  PubMed  Google Scholar 

  54. Chakraborty S, Bhattacharjee P (2017) Supercritical carbon dioxide extraction of melatonin from Brassica campestris: in vitro antioxidant, hypocholesterolemic and hypoglycaemic activities of the extracts. Int J Pharm Sci Res 8:2486–2495

    CAS  Google Scholar 

  55. Varela-Martínez DA, González-Sálamo J, González-Curbelo MÁ, Hernández-Borges J (2020) Quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction. In: Poole CF (ed) Liquid-phase extraction. Elsevier, pp 399–437

    Chapter  Google Scholar 

  56. Wang X, You J, Liu A, Qi X, Li D, Zhao Y, Zhang Y, Zhang L, Zhang X, Li P (2022) Variation in melatonin contents and genetic dissection of melatonin biosynthesis in sesame. Plan Theory 11:2005. https://doi.org/10.3390/plants11152005

    Article  CAS  Google Scholar 

  57. Greer M, Williams CM (1967) Gas-chromatographic determination of melatonin and 6-hydroxymelatonin. Clin Chim Acta 15:165–168. https://doi.org/10.1016/0009-8981(67)90342-7

    Article  CAS  Google Scholar 

  58. Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK (2016) Melatonin in plants and plant culture systems: variability, stability and efficient quantification. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01721

  59. Oyama T, Nagai R, Fujimoto M, Konishi R, Mita M, Uezono K, Zaitsu K, Hamase K (2015) Development of a fully-automated on-line oxidation column-switching HPLC system for the determination of endogenous melatonin in human clinical samples. Anal Sci 31:1129–1135. https://doi.org/10.2116/analsci.31.1129

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Jiang H, Chen X, Song X, Xu F, Chen F, Mao Z, Gao S, Chen W (2020) A rapid and sensitive method for simultaneous determination of eight protein-bound uremic toxins in human serum by UHPLC-MS/MS: application in assessing peritoneal dialysis. J Pharm Biomed Anal 186:113312. https://doi.org/10.1016/j.jpba.2020.113312

    Article  CAS  PubMed  Google Scholar 

  61. Gomez FJV, Hernández IG, Martinez LD, Silva MF, Cerutti S (2013) Analytical tools for elucidating the biological role of melatonin in plants by LC-MS/MS: liquid phase separations. Electrophoresis 34:1749–1756. https://doi.org/10.1002/elps.201200569

    Article  CAS  PubMed  Google Scholar 

  62. Danielson ND, Mansour FR, Zhou L, Connell CV, Dotlich EM, Gibler JN, Norman BE, Grossman S, Wei W, Zhang Y (2018) Liquid chromatography with alkylammonium formate ionic liquid mobile phases and fluorescence detection. J Chromatogr A 1559:128–135. https://doi.org/10.1016/j.chroma.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  63. Gomez FJV, Raba J, Cerutti S, Silva MF (2012) Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle. J Pineal Res 52:349–355

    Article  CAS  PubMed  Google Scholar 

  64. Vitalini S, Gardana C, Simonetti P, Fico G, Iriti M (2013) Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J Pineal Res 54:322–333. https://doi.org/10.1111/jpi.12028

    Article  CAS  PubMed  Google Scholar 

  65. Barreiro Astray S, Barbosa-Pereira L, Lage-Yusty MA, López-Hernández J (2021) Comparison of analytical methods for the rapid determination of melatonin in food supplements. Food Anal Methods 14:734–741. https://doi.org/10.1007/s12161-020-01912-2

    Article  Google Scholar 

  66. Erland LAE, Saxena PK (2017) Melatonin natural health products and supplements: presence of serotonin and significant variability of melatonin content. J Clin Sleep Med 13:275–281. https://doi.org/10.5664/jcsm.6462

    Article  PubMed  PubMed Central  Google Scholar 

  67. Carter MD, Wade Calcutt M, Malow BA, Rose KL, Hachey DL (2012) Quantitation of melatonin and n-acetylserotonin in human plasma by nanoflow LC-MS/MS and electrospray LC-MS/MS: melatonin and N-acetylserotonin quantitation. J Mass Spectrom 47:277–285. https://doi.org/10.1002/jms.2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferreira MS, De Oliveira DN, Mesquita CC, Barbosa APDL, Anhê GF, Catharino RR (2016) MALDI-MSI: a fast and reliable method for direct melatonin quantification in biological fluids. J Anal Sci Technol 7:28. https://doi.org/10.1186/s40543-016-0106-5

    Article  CAS  Google Scholar 

  69. Jiang J, Zhang D, Zhang H, Yu K, He J, Zhang X, Li N (2019) Rapid determination of melatonin by droplet spray ionization mass spectrometry. Int J Mass Spectrom 444:116191. https://doi.org/10.1016/j.ijms.2019.116191

    Article  CAS  Google Scholar 

  70. Giraldo-Acosta M, Martínez-Andújar C, Martínez-Melgarejo PA, Cano A, Hernández-Ruiz J, Arnao MB (2022) Protective effect (Safener) of melatonin on Vigna Radiata L. seedlings in the presence of the fungicide copper oxychloride. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10886-w

  71. Ramakrishna A, Giridhar P, Sankar KU, Ravishankar GA (2012) Endogenous profiles of indoleamines: serotonin and melatonin in different tissues of Coffea canephora P ex Fr. As analyzed by HPLC and LC-MS-ESI. Acta Physiol Plant 34:393–396. https://doi.org/10.1007/s11738-011-0829-2

    Article  CAS  Google Scholar 

  72. Fernández-Cruz E, Álvarez-Fernández MA, Valero E, Troncoso AM, García-Parrilla MC (2016) Validation of an analytical method to determine melatonin and compounds related to l-tryptophan metabolism using UHPLC/HRMS. Food Anal Methods 9:3327–3336. https://doi.org/10.1007/s12161-016-0529-z

    Article  Google Scholar 

  73. Bhattacharjee A, Shashidhara SC, Saha S (2014) Isolation, purification and structural elucidation of N-Acetyl-5-Methoxytryptamine (melatonin) from Crataeva nurvala Buch-ham stem bark. Am J Phytomed Clin Ther 2:301–309

    CAS  Google Scholar 

  74. Kennaway DJ (2020) Measuring melatonin by immunoassay. J Pineal Res 69:e12657. https://doi.org/10.1111/jpi.12657

    Article  CAS  PubMed  Google Scholar 

  75. Van Tassel DL, Roberts N, Lewy A, O’Neill SD (2001) Melatonin in plant organs: Melatonin in plant organs. J Pineal Res 31:8–15. https://doi.org/10.1034/j.1600-079X.2001.310102.x

    Article  PubMed  Google Scholar 

  76. Kennaway DJ (2019) A critical review of melatonin assays: past and present. J Pineal Res e12572. https://doi.org/10.1111/jpi.12572

  77. De La Puerta C, Carrascosa-Salmoral MP, García-Luna PP, Lardone PJ, Herrera JL, Fernández-Montesinos R, Guerrero JM, Pozo D (2007) Melatonin is a phytochemical in olive oil. Food Chem 104:609–612. https://doi.org/10.1016/j.foodchem.2006.12.010

    Article  CAS  Google Scholar 

  78. Iriti M, Rossoni M, Faoro F (2006) Melatonin content in grape: myth or panacea? J Sci Food Agric 86:1432–1438. https://doi.org/10.1002/jsfa.2537

    Article  CAS  Google Scholar 

  79. Pesti-Asbóth G, Molnár-Bíróné P, Forgács I, Remenyik J, Dobránszki J (2022) Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. Front Plant Sci 13:979141. https://doi.org/10.3389/fpls.2022.979141

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ye T, Yin X, Yu L, Zheng S-J, Cai W-J, Wu Y, Feng Y-Q (2019) Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J Pineal Res 66:e12531. https://doi.org/10.1111/jpi.12531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was funded by the Ministerio de Ciencia e Innovación (Spain), “Proyectos de I+D+,” Programas Estatales de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i y de I+D+i Orientada a los Retos de la Sociedad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017–2020, Grant PID2020-113029RB-I00, funded by MCIN/AEI/ 10.13039/501100011033. More information can be found on Phytohormones and Plant Development Research Group web page at https://www.um.es/en/web/phytohormones (accessed October 22, 2023)a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino B. Arnao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cano, A., Hernández-Ruiz, J., Arnao, M.B. (2024). Common Methods of Extraction and Determination of Phytomelatonin in Plants. In: Corpas, F.J., Palma, J.M. (eds) ROS Signaling in Plants . Methods in Molecular Biology, vol 2798. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3826-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3826-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3825-5

  • Online ISBN: 978-1-0716-3826-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics