Skip to main content

Combining a Base Deaminase Mutator with Phage-Assisted Evolution

  • Protocol
  • First Online:
Phage Engineering and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2793))

Abstract

Phage-assisted evolution has emerged as a powerful technique for improving a protein’s function by using mutagenesis and selective pressure. However, mutations typically occur throughout the host’s genome and are not limited to the gene-of-interest (GOI): these undesirable genomic mutations can yield host cells that circumvent the system’s selective pressure. Our system targets mutations specifically toward the GOI by combining T7 targeted mutagenesis and phage-assisted evolution. This system improves the structure and function of proteins by accumulating favorable mutations that can change its binding affinity, specificity, and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Popa SC, Inamoto I, Thuronyi BW, Shin JA (2020) Phage assisted continuous evolution (PACE): a guide focused on evolving protein-DNA interactions. ACS Omega 5:26957–26966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie VC, Styles MJ, Dickinson BC (2022) Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 47:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seo D, Koh B, Eom G-E, Kim HW, Kim S (2023) A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Res 51(10):e59–e59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park H, Kim S (2021) Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucl Acid Res 49:e32

    Article  CAS  Google Scholar 

  6. Calvopino-Chavez DG, Gardner MA, Griffitts JS (2022) Engineering efficient termination of bacteriophage T7 RNA polymerase transcription. G3 Genes Genomes Genet 12:jkac070

    Article  Google Scholar 

  7. Thuronyi BW, Koblan LW, Levy JM, Yeh W-H, Zheng C, Newby GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR (2019) Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 37:1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inamoto I, Sheoran I, Popa SC, Hussain M, Shin JA (2020) Combining rational design and continuous evolution on minimalist proteins that target DNA. ACS Chem Biol 16:35–44

    Article  PubMed  Google Scholar 

  9. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Iss Mol Biol 13:51–76

    CAS  Google Scholar 

  10. Dunn JJ, Studier FW, Gottesman M (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166(4):477–535

    Article  CAS  PubMed  Google Scholar 

  11. Smeal SW, Schmitt MA, Rodrigues Pereira R, Prasa A, Fisk JD (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274

    Article  CAS  PubMed  Google Scholar 

  12. Meng X, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Álvarez B, Mencía M, de Lorenzo V, Fernández LÁ (2020) In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat Commun 11(1):6436. https://doi.org/10.1038/s41467-020-20230-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dotto GP, Horiuchi K, Zinder ND (1984) The functional origin of bacteriophage f1 DNA replication: its signals and domains. J Mol Biol 172(4):507–521

    Article  CAS  PubMed  Google Scholar 

  15. Sathiamoorthy S, Shin JA (2012) Boundaries of the origin of replication: creation of a pET-28a-derived vector with p15A copy control allowing compatible coexistence with pET vectors. PLoS One 7:e47259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller SM, Wang T, Liu DR (2020) Phage-assisted continuous and non-continuous evolution. Nat Protoc 15(12):4101–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We are grateful for assistance from Afnan Khan and Montdher Hussain and for support from NSERC and the UTM Office of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumi A. Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ali, M., Akel, R., Botero, M.J., Shin, J.A. (2024). Combining a Base Deaminase Mutator with Phage-Assisted Evolution. In: Peng, H., Liu, J., Chen, I.A. (eds) Phage Engineering and Analysis. Methods in Molecular Biology, vol 2793. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3798-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3798-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3797-5

  • Online ISBN: 978-1-0716-3798-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics