Skip to main content

Evaluation of Tight Junction Integrity in Brain Endothelial Cells Using Confocal Microscopy

  • Protocol
  • First Online:
Vascular Hyperpermeability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2711))

  • 798 Accesses

Abstract

The blood-brain barrier (BBB) is a highly complex and dynamic microvascular barrier that protects the brain parenchyma from the entry of pathogens, toxins, and other macromolecules and is a critical structure that helps to maintain brain homeostasis. The BBB is formed mainly by brain capillary endothelial cells and perivascular astrocytes and pericytes. One of the primary properties of the BBB is a tight regulation of paracellular permeability due to the presence of tight junctional complexes (also, adherens and gap junctions) between the neighboring microvascular endothelial cells. Alterations in the assembly of the tight junctions impair BBB properties, particularly influenced barrier integrity and permeability. The tight junctions of the BBB are mainly composed of proteins including claudins, occludin, and zonula occludens-1 (ZO-1). Zonula occludens-1 binds to the actin cytoskeleton, and its localization provides valuable information on the status of BBB integrity and permeability. Immunofluorescence localization of ZO-1 and/or other tight junction proteins is a reliable indicator of barrier integrity and permeability in microvascular endothelial cells. In microvascular endothelial cells, f-actin stress fiber formation significantly influences the rate and size of the inter-endothelial cell gap that form as cells retract from their borders. Rhodamine phalloidin is a popular conjugate used as a fluorescent label for f-actin. Herein, we describe the procedures for ZO-1 immunofluorescence and f-actin labeling followed by confocal microscopic imaging to determine barrier integrity and tight junction organization in brain microvascular endothelial cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietrich W, Erbguth F (2013) Increased intracranial pressure and brain edema. Med Klin Intensivmed Notfmed 108(2):157–169; quiz 170–171

    Article  CAS  PubMed  Google Scholar 

  2. Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia 56(7):699–708

    Article  PubMed  Google Scholar 

  3. Cecchelli R et al (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    Article  CAS  PubMed  Google Scholar 

  4. Guest J et al (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis 12:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mayhan WG (2001) Regulation of blood-brain barrier permeability. Microcirculation 8(2):89–104

    CAS  PubMed  Google Scholar 

  7. Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37(1):3–23

    Article  CAS  PubMed  Google Scholar 

  8. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31(4):497–511

    Article  PubMed  Google Scholar 

  9. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  10. Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6(3):179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daneman R et al (2010) The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5(10):e13741

    Article  PubMed  PubMed Central  Google Scholar 

  12. Annunziata P et al (2002) Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J Neuroimmunol 131(1–2):41–49

    Article  CAS  PubMed  Google Scholar 

  13. Mariano C et al (2013) Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 351(3):397–407

    Article  CAS  PubMed  Google Scholar 

  14. Paris L et al (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778(3):646–659

    Article  CAS  PubMed  Google Scholar 

  15. Thal SC et al (2012) Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLoS One 7(12):e50752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fanning AS et al (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273(45):29745–29753

    Article  CAS  PubMed  Google Scholar 

  17. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A (2000) MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 11(4):315–324

    Article  CAS  PubMed  Google Scholar 

  19. Arshad F et al (2010) Blood-brain barrier integrity and breast cancer metastasis to the brain. Pathol Res Int 2011:920509

    Google Scholar 

  20. Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5(1):71–81

    Article  CAS  PubMed  Google Scholar 

  21. Alluri H, Grimsley M, Shaji CA et al (2016) Attenuation of blood-brain barrier breakdown and hyperpermeability by calpain inhibition. J Biol Chem 291:26958–26969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Institutes of Health (NIH) grant 5 SC3 NS127765-02 (BT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binu Tharakan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alluri, H., Peddaboina, C.S., Tharakan, B. (2024). Evaluation of Tight Junction Integrity in Brain Endothelial Cells Using Confocal Microscopy. In: Tharakan, B. (eds) Vascular Hyperpermeability. Methods in Molecular Biology, vol 2711. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3429-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3429-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3428-8

  • Online ISBN: 978-1-0716-3429-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics