Skip to main content

Mutation Knock-in Methods Using Single-Stranded DNA and Gene Editing Tools in Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Introduction or knock-in of precise genomic modifications remains one of the most important applications of CRISPR/Cas9 in all model systems including zebrafish. The most widely used type of donor template containing the desired modification is single-stranded DNA (ssDNA), either in the form of single-stranded oligodeoxynucleotides (ssODN) (<150 nucleotides (nt)) or as long ssDNA (lssDNA) molecules (up to about 2000 nt). Despite the challenges posed by DNA repair after DNA double-strand breaks, knock-in of precise mutations is relatively straightforward in zebrafish. Knock-in efficiency can be enhanced by careful donor template design, using lssDNA as template or tethering the donor template DNA to the Cas9-guide RNA complex. Other point mutation methods such as base editing and prime editing are starting to be applied in zebrafish and many other model systems. However, these methods may not always be sufficiently accessible or may have limited capacity to perform all desired mutation knock-ins which are possible with ssDNA-based knock-in methods. Thus, it is likely that there will be complementarity in the technologies used for generating precise mutants. Here, we review and describe a suite of CRISPR/Cas9 knock-in procedures utilizing ssDNA as the donor template in zebrafish, point out the potential challenges and suggest possible approaches for their solution ultimately leading to successful generation of precise mutant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petri K, Zhang W, Ma J et al (2021) CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat Biotechnol. https://doi.org/10.1038/s41587-021-00901-y

  2. Qin W, Lu X, Liu Y et al (2018) Precise a•T to G•C base editing in the zebrafish genome. BMC Biol 16:139. https://doi.org/10.1186/s12915-018-0609-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Y, Shang D, Ying R et al (2020) An optimized base editor with efficient C-to-T base editing in zebrafish. BMC Biol 18:190. https://doi.org/10.1186/s12915-020-00923-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosello M, Vougny J, Czarny F et al (2021) Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. elife 10:e65552. https://doi.org/10.7554/eLife.65552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Qin W, Lu X et al (2017) Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 8:118. https://doi.org/10.1038/s41467-017-00175-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armstrong GAB, Liao M, You Z et al (2016) Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One 11:1–10. https://doi.org/10.1371/journal.pone.0150188

    Article  CAS  Google Scholar 

  7. Boel A, De Saffel H, Steyaert W et al (2018) CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech 11:dmm035352. https://doi.org/10.1242/dmm.035352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prykhozhij SV, Fuller C, Steele SL et al (2018) Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 46:e102. https://doi.org/10.1093/nar/gky512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:5–12. https://doi.org/10.1371/journal.pone.0098186

    Article  CAS  Google Scholar 

  10. Farr GH III, Imani K, Pouv D, Maves L (2018) Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 11:dmm035972. https://doi.org/10.1242/dmm.035972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tessadori F, Roessler HI, Savelberg SMC et al (2018) Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 11:dmm035469. https://doi.org/10.1242/dmm.035469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Vrieze E, de Bruijn SE, Reurink J et al (2021) Efficient generation of knock-in zebrafish models for inherited disorders using crispr-cas9 ribonucleoprotein complexes. Int J Mol Sci 22:9429. https://doi.org/10.3390/ijms22179429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai H, Liu L, An K et al (2020) CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics 21:1–12. https://doi.org/10.1186/s12864-020-6493-4

    Article  CAS  Google Scholar 

  14. Ranawakage DC, Okada K, Sugio K et al (2021) Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front Cell Dev Biol 8:1–20. https://doi.org/10.3389/fcell.2020.598634

    Article  Google Scholar 

  15. Aird EJ, Lovendahl KN, St. Martin A et al (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1:54. https://doi.org/10.1038/s42003-018-0054-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simone BW, Lee HB, Daby CL, et al (2021) Chimeric RNA:DNA donorguide improves HDR in vitro and in vivo. bioRxiv https://doi.org/10.1101/2021.05.28.446234

  17. Shola DTN, Yang C, Han C, et al (2021) Generation of mouse model (KI and CKO) via Easi-CRISPR BT. In: Singh SR, Hoffman RM, Singh A (eds) Mouse genetics: methods and protocols. Springer, New York, pp 1–27

    Google Scholar 

  18. Nakayama T, Grainger RM, Cha SW (2020) Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis. Genesis 58:e23366. https://doi.org/10.1002/dvg.23366

    Article  CAS  PubMed  Google Scholar 

  19. Prykhozhij SV, Rajan V, Ban K, Berman JN (2021) CRISPR knock-in designer: automatic oligonucleotide design software to introduce point mutations by gene editing methods. ReGEN Open 1:53–67. https://doi.org/10.1089/regen.2021.0025

    Article  Google Scholar 

  20. Inoue YU, Morimoto Y, Yamada M et al (2021) An optimized preparation method for long ssDNA donors to facilitate quick knock-in mouse generation. Cell 10:1–15. https://doi.org/10.3390/cells10051076

    Article  CAS  Google Scholar 

  21. Jao L, Wente SR, Chen W (2013) Efficient multiplex biallelic zebra fish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci 110:1–6. https://doi.org/10.1073/pnas.1308335110

    Article  Google Scholar 

  22. Prykhozhij S V, Cordeiro-Santanach A, Caceres L, Berman JN (2020) Genome editing in zebrafish using high-fidelity Cas9 nucleases: choosing the right nuclease for the task BT. In: Sioud M (ed) RNA interference and CRISPR technologies: technical advances and new therapeutic opportunities. Springer, New York, pp 385–405

    Google Scholar 

  23. Lin B, Sun J, Fraser IDC (2021) Single-tube genotyping for small insertion/deletion mutations: simultaneous identification of wild type, mutant and heterozygous alleles. Biol Methods Protoc 5:1–11. https://doi.org/10.1093/biomethods/bpaa007

    Article  CAS  Google Scholar 

  24. Prykhozhij SV, Steele SL, Razaghi B, Berman JN (2017) A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish. Dis Model Mech 10:811–822. https://doi.org/10.1242/dmm.026765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kakui H, Yamazaki M, Shimizu KK (2021) PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes. Sci Rep 11:1–10. https://doi.org/10.1038/s41598-021-99641-x

    Article  CAS  Google Scholar 

  26. Connelly JP, Pruett-Miller SM (2019) CRIS.Py: a versatile and high-throughput analysis program for CRISPR-based genome editing. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-40896-w

    Article  CAS  Google Scholar 

  27. Lindsay H, Burger A, Biyong B et al (2016) CrispRVariants charts the mutation spectrum of genome engineering experiments. Nat Biotechnol 34:701–702. https://doi.org/10.1038/nbt.3628

    Article  CAS  PubMed  Google Scholar 

  28. Boel A, Steyaert W, De Rocker N et al (2016) BATCH-GE: Batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330. https://doi.org/10.1038/srep30330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Touroutine D, Tanis JE (2020) A rapid, superselective method for detection of single nucleotide variants in caenorhabditis elegans. Genetics 216:343–352. https://doi.org/10.1534/genetics.120.303553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prykhozhij, S.V., Berman, J.N. (2024). Mutation Knock-in Methods Using Single-Stranded DNA and Gene Editing Tools in Zebrafish. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics