Skip to main content

Potential Value and Application of Liquid Biopsy in Tumor, Neurodegeneration, and Muscle Degenerative Diseases

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

Abstract

Liquid biopsy provides a promising alternative for the detection of disease-specific markers due to its superior noninvasive and original tissue representativeness. Liquid biopsies have a wide range of health and disease applications involving components ranging from circulating cells to acellular nucleic acid molecules and other metabolites. Here, we review the different components of liquid biopsy and investigate the most advanced noninvasive methods for detecting these components as well as their existing problems and trends. In particular, we emphasize the importance of analyzing liquid biopsy data from extracellular vesicles and small nucleic acids in neurological and muscle degeneration, with the aim of using this technique to enhance personalized healthcare. Although previous reviews have focused on cancer, this review mainly emphasizes the potential application of extracellular vesicles and microRNAs in liquid biopsy in neurodegeneration and muscle degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marquette CH et al (2020) Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study. Lancet Respir Med 8(7):709–716

    Article  PubMed  Google Scholar 

  2. Heitzer E et al (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20(2):71–88

    Article  CAS  PubMed  Google Scholar 

  3. Doval DC et al (2017) Liquid biopsy: a potential and promising diagnostic tool for advanced stage non-small cell lung cancer patients. Indian J Cancer 54(Supplement):S25–S30

    Article  CAS  PubMed  Google Scholar 

  4. Rolfo C et al (2018) Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol 13(9):1248–1268

    Article  PubMed  Google Scholar 

  5. Jacobson RA et al (2019) Evolving clinical utility of liquid biopsy in gastrointestinal cancers. Cancers (Basel) 11(8):1164

    Article  CAS  PubMed  Google Scholar 

  6. Koldby KM et al (2019) Tumor-specific genetic aberrations in cell-free DNA of gastroesophageal cancer patients. J Gastroenterol 54(2):108–121

    Article  CAS  PubMed  Google Scholar 

  7. Franca T, de Lima L et al (2020) The use of minimally invasive biomarkers for the diagnosis and prognosis of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 1874(2):188451

    Article  Google Scholar 

  8. Zhang Q et al (2020) Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications. Theranostics 10(26):12060–12071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuster E et al (2021) Better together: circulating tumor cell clustering in metastatic cancer. Trends Cancer 7(11):1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou E et al (2021) Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 67:103365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cafforio P et al (2021) Liquid biopsy in cervical cancer: hopes and pitfalls. Cancers (Basel) 13(16):3968

    Article  CAS  PubMed  Google Scholar 

  12. Wright TC Jr et al (2002) 2001 consensus guidelines for the management of women with cervical cytological abnormalities. JAMA 287(16):2120–2129

    Article  PubMed  Google Scholar 

  13. Hussain SH et al (2022) Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: trends and prospects. Biosens Bioelectron 197:113770

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez-Garrastacho M et al (2021) Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 126:331

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramalingam N, Jeffrey SS (2018) Future of liquid biopsies with growing technological and bioinformatics studies: opportunities and challenges in discovering tumor heterogeneity with single-cell level analysis. Cancer J 24(2):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serrano MJ et al (2020) Precision prevention and cancer interception: the new challenges of liquid biopsy. Cancer Discov 10(11):1635–1644

    Article  PubMed  Google Scholar 

  17. Ignatiadis M, Sledge GW, Jeffrey SS (2021) Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol 18(5):297–312

    Article  PubMed  Google Scholar 

  18. Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finotti A et al (2018) Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (review). Int J Oncol 53(4):1395–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628

    Article  CAS  PubMed  Google Scholar 

  21. Keller L, Pantel K (2019) Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 19(10):553–567

    Article  CAS  PubMed  Google Scholar 

  22. Siravegna G et al (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14(9):531–548

    Article  CAS  PubMed  Google Scholar 

  23. Watts G (2018) Liquid biopsy: still early days for early detection. Lancet 391(10140):2593–2594

    Article  PubMed  Google Scholar 

  24. Stroun M et al (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46(5):318–322

    Article  CAS  PubMed  Google Scholar 

  25. Bronkhorst AJ, Ungerer V, Holdenrieder S (2019) The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif 17:100087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersson D, Kubista M, Stahlberg A (2020) Liquid biopsy analysis in cancer diagnostics. Mol Asp Med 72:100839

    Article  Google Scholar 

  27. Zhou B et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian X et al (2019) Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 12(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  PubMed  Google Scholar 

  30. Valihrach L, Androvic P, Kubista M (2020) Circulating miRNA analysis for cancer diagnostics and therapy. Mol Asp Med 72:100825

    Article  CAS  Google Scholar 

  31. Gidwani K et al (2020) Nanoparticle-aided glycovariant assays to bridge biomarker performance and ctDNA results. Mol Asp Med 72:100831

    Article  CAS  Google Scholar 

  32. Hofman P et al (2019) Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Ann Oncol 30(9):1448–1459

    Article  CAS  PubMed  Google Scholar 

  33. Prakash A, Mahoney KE, Orsburn BC (2021) Cloud computing based Immunopeptidomics utilizing community curated variant libraries simplifies and improves neo-antigen discovery in metastatic melanoma. Cancers (Basel) 13(15):3754

    Article  CAS  PubMed  Google Scholar 

  34. Sun K et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112(40):E5503–E5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kubista M, Dreyer-Lamm J, Stahlberg A (2018) The secrets of the cell. Mol Asp Med 59:1–4

    Article  Google Scholar 

  36. Shen Z, Wu A, Chen X (2017) Current detection technologies for circulating tumor cells. Chem Soc Rev 46(8):2038–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu J et al (2020) Refining cancer management using integrated liquid biopsy. Theranostics 10(5):2374–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen JD et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benichou G et al (2020) Extracellular vesicles in allograft rejection and tolerance. Cell Immunol 349:104063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gunasekaran M et al (2017) Donor-derived exosomes with lung self-antigens in human lung allograft rejection. Am J Transplant 17(2):474–484

    Article  CAS  PubMed  Google Scholar 

  41. Park J et al (2017) Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 11(11):11041–11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korutla L et al (2019) Noninvasive diagnosis of recurrent autoimmune type 1 diabetes after islet cell transplantation. Am J Transplant 19(6):1852–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sukma Dewi I et al (2017) Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res 113(5):440–452

    PubMed  Google Scholar 

  44. Kittleson MM, Garg S (2021) Solid gold, or liquid gold?: towards a new diagnostic standard for heart transplant rejection. Circulation 143(12):1198–1201

    Article  PubMed  Google Scholar 

  45. Oellerich M et al (2021) Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol 17(9):591–603

    Article  CAS  PubMed  Google Scholar 

  46. Bianchi DW, Rava RP, Sehnert AJ (2014) DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 371(6):578

    CAS  PubMed  Google Scholar 

  47. Vermeesch JR, Voet T, Devriendt K (2016) Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet 17(10):643–656

    Article  CAS  PubMed  Google Scholar 

  48. Schobers G et al (2021) Liquid biopsy: state of reproductive medicine and beyond. Hum Reprod 36(11):2824–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Meij KRM et al (2019) TRIDENT-2: National implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in The Netherlands. Am J Hum Genet 105(6):1091–1101

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biro O et al (2017) Various levels of circulating exosomal total-miRNA and miR-210 hypoxamiR in different forms of pregnancy hypertension. Pregnancy Hypertens 10:207–212

    Article  PubMed  Google Scholar 

  51. Salomon C et al (2017) Placental exosomes as early biomarker of preeclampsia: potential role of Exosomal MicroRNAs across gestation. J Clin Endocrinol Metab 102(9):3182–3194

    Article  PubMed  Google Scholar 

  52. Miranda J et al (2018) Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - liquid biopsies to monitoring fetal growth. Placenta 64:34–43

    Article  CAS  PubMed  Google Scholar 

  53. Ghafarian F et al (2019) The clinical impact of exosomes in cardiovascular disorders: from basic science to clinical application. J Cell Physiol 234(8):12226–12236

    Article  CAS  PubMed  Google Scholar 

  54. Emanueli C et al (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30

    Article  CAS  Google Scholar 

  55. Liu Y et al (2019) Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ Res 124(4):575–587

    Article  CAS  PubMed  Google Scholar 

  56. Goren Y et al (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14(2):147–154

    Article  CAS  PubMed  Google Scholar 

  57. Wang H et al (2010) Increased serum levels of microvesicles in nonvalvular atrial fibrillation determinated by ELISA using a specific monoclonal antibody AD-1. Clin Chim Acta 411(21–22):1700–1704

    Article  CAS  PubMed  Google Scholar 

  58. Kasner M et al (2016) Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. Int J Cardiol 215:402–405

    Article  CAS  PubMed  Google Scholar 

  59. Ji Q et al (2016) Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 11(9):e0163645

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rajendran L et al (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34(46):15482–15489

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  62. Gong J et al (2016) Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 214(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coleman BM, Hill AF (2015) Extracellular vesicles – their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 40:89–96

    Article  CAS  PubMed  Google Scholar 

  64. Bellingham SA et al (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao Y et al (2021) Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 201:102022

    Article  PubMed  Google Scholar 

  66. Vella LJ, Hill AF, Cheng L (2016) Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int J Mol Sci 17(2):173

    Article  PubMed  PubMed Central  Google Scholar 

  67. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7

    Article  CAS  PubMed  Google Scholar 

  68. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206

    Article  CAS  PubMed  Google Scholar 

  69. Villemagne VL et al (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367

    Article  CAS  PubMed  Google Scholar 

  70. Rajendran L et al (2008) Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science 320(5875):520–523

    Article  CAS  PubMed  Google Scholar 

  71. Rajendran L et al (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuyama K et al (2014) Decreased amyloid-beta pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289(35):24488–24498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790

    Article  CAS  PubMed  Google Scholar 

  74. Saman S et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287(6):3842–3849

    Article  CAS  PubMed  Google Scholar 

  75. Fiandaca MS et al (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11(6):600–7 e1

    Article  PubMed  Google Scholar 

  76. Jia L et al (2019) Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement 15(8):1071–1080

    Article  PubMed  Google Scholar 

  77. Joshi P et al (2015) Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on abeta-vesicle interaction. Int J Mol Sci 16(3):4800–4813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bulloj A et al (2010) Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-beta degrading protease. J Alzheimers Dis 19(1):79–95

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yuyama K et al (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287(14):10977–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gallo A et al (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng L et al (2015) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20(10):1188–1196

    Article  CAS  PubMed  Google Scholar 

  82. Emmanouilidou E et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Danzer KM et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alvarez-Erviti L et al (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42(3):360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li JY et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  PubMed  Google Scholar 

  86. Hansen C et al (2011) Alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121(2):715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Damme M et al (2015) Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 129(3):337–362

    Article  CAS  PubMed  Google Scholar 

  88. Baixauli F, Lopez-Otin C, Mittelbrunn M (2014) Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 5:403

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cardo LF et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260(5):1420–1422

    Article  PubMed  Google Scholar 

  90. Rong S et al (2020) The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle 11(2):348–365

    Article  PubMed  PubMed Central  Google Scholar 

  91. Phinney DG et al (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura Y et al (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265

    Article  CAS  PubMed  Google Scholar 

  93. Bittel DC, Jaiswal JK (2019) Contribution of extracellular vesicles in rebuilding injured muscles. Front Physiol 10:828

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yue B et al (2020) Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif 53(7):e12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wosczyna MN, Rando TA (2018) A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev Cell 46(2):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hogarth MW et al (2019) Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B. Nat Commun 10(1):2430

    Article  PubMed  PubMed Central  Google Scholar 

  97. Taverna S, Pucci M, Alessandro R (2017) Extracellular vesicles: small bricks for tissue repair/regeneration. Ann Transl Med 5(4):83

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guescini M et al (2017) Extracellular vesicles released by oxidatively injured or intact C2C12 myotubes promote distinct responses converging toward myogenesis. Int J Mol Sci 18(11):1–14

    Article  Google Scholar 

  99. Murphy C et al (2018) Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Asp Med 60:123–128

    Article  CAS  Google Scholar 

  100. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  101. Whitham M, Febbraio MA (2016) The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 15(10):719–729

    Article  CAS  PubMed  Google Scholar 

  102. Choi JS et al (2016) Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release 222:107–115

    Article  CAS  PubMed  Google Scholar 

  103. Madison RD et al (2014) Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34). J Extracell Vesicles 3:3

    Article  Google Scholar 

  104. Yu Y et al (2018) Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARgamma. Theranostics 8(8):2171–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aoi W, Sakuma K (2014) Does regulation of skeletal muscle function involve circulating microRNAs? Front Physiol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81971775 to Lin Chen, 82071970 to Yuxiang Wu and 82272123 to Guodong Xu) and Science and Technology Innovation Project of Jianghan University (Grant No.2021kjzx008 to Yuxiang Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, L., Yang, J., Xu, G., Wu, Y. (2023). Potential Value and Application of Liquid Biopsy in Tumor, Neurodegeneration, and Muscle Degenerative Diseases. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics