Skip to main content

Advertisement

Log in

Tumor-specific genetic aberrations in cell-free DNA of gastroesophageal cancer patients

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The applicability of liquid biopsies is studied intensively in all types of cancer and analysis of circulating tumor DNA (ctDNA) has recently been implemented clinically for mutation detection in lung cancer. ctDNA may provide information about tumor quantity and mutations present in the tumor, and as such have many potential applications in diagnosis and treatment of cancer. It has been suggested that ctDNA analysis may overcome the issue of intra-tumor heterogeneity faced by tissue biopsies and serve as an additional diagnostic tool. Furthermore, liquid biopsies are potentially helpful for monitoring of treatment response as well as detection of minimal residual disease and relapse. Gastroesophageal cancers (GEC) have high mortality rates and the majority of patients present with advanced stage at diagnosis or succumb due to disease recurrence even after radical resection of the primary tumor. Biomarkers that can help optimize treatment strategy are thus highly desirable. The present study is a review of published data on ctDNA in GEC patients. We identified 25 studies in which tumor-specific genetic aberrations were investigated in plasma or serum and discuss these in relation to the methods applied for ctDNA analysis. The methods used for ctDNA detection greatly influence the sensitivity of the analysis and, therefore, the potential clinical applications. We found that studies of ctDNA in GEC, although limited in number, are promising for several applications such as genetic profiling of tumors and monitoring of disease progression. However, more studies are needed to establish if and how this analysis can be clinically implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–86.

    Article  CAS  Google Scholar 

  2. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. New Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Ychou M, Boige V, Pignon JP, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29:1715–21.

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro J, van Lanschot JJB, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16:1090–8.

    Article  PubMed  Google Scholar 

  5. Lordick F, Mariette C, Haustermans K, et al. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v50–7.

    Article  CAS  PubMed  Google Scholar 

  6. Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v38–49.

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  9. Maron SB, Catenacci DV. Novel targeted therapies for esophagogastric cancer. Surg Oncol Clin N Am. 2017;26:293–312.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou J, Ma X, Bi F, et al. Clinical significance of circulating tumor cells in gastric cancer patients. Oncotarget. 2017;8:25713–20.

    PubMed  PubMed Central  Google Scholar 

  11. Armstrong D, Wildman DE. Extracellular vesicles and the promise of continuous liquid biopsies. J Pathol Transl Med. 2018;52:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzaki J, Suzuki H. Circulating microRNAs as potential biomarkers to detect transformation of barrett’s oesophagus to oesophageal adenocarcinoma. BMJ Open Gastroenterol. 2017;4:e000160.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crowley E, Di Nicolantonio F, Loupakis F, et al. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10:472–84.

    Article  CAS  PubMed  Google Scholar 

  15. Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.

    Article  CAS  PubMed  Google Scholar 

  16. FDA. P150044—Cobas EGFR MUTATION TEST V2. In: premarket approval. US Food & Drug Administration. 2016. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P150044 Accessed 9 May 2018.

  17. EMA. Iressa: public assessment report—product information. In European Medicines Agency. 2016; http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001016/WC500036358.pdf Accessed 9 May 2018.

  18. EMA. Tagrisso: public assessment report—product information. In: European Medicines Agency. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004124/WC500202022.pdf Accessed 9 May 2018.

  19. Siewert JR, Ott K. Are squamous and adenocarcinomas of the esophagus the same disease? Semin Radiat Oncol. 2007;17:38–44.

    Article  PubMed  Google Scholar 

  20. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  21. Zheng T, Mayne ST, Holford TR, et al. The time trend and age—period—cohort effects on incidence of adenocarcinoma of the stomach in connecticut from 1955–1989. Cancer. 1993;72:330–40.

    Article  CAS  PubMed  Google Scholar 

  22. Cancer Genome Atlas Research Network, U. Analysis Working Group: Asan, B.C. Cancer Agency, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–75.

    Article  CAS  Google Scholar 

  23. Hayakawa Y, Sethi N, Sepulveda AR, et al. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev Cancer. 2016;16:305–18.

    Article  CAS  PubMed  Google Scholar 

  24. Van Cutsem E, Sagaert X, Topal B, et al. Gastric cancer. Lancet. 2016;388:2654–64.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki H, Mori H. World trends for H. pylori eradication therapy and gastric cancer prevention strategy by H. pylori test-and-treat. J Gastroenterol. 2018;53:354–61.

    Article  PubMed  Google Scholar 

  26. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  27. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma: an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  CAS  PubMed  Google Scholar 

  28. Cancer Genome Atlas Research, N., Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  29. Sohn BH, Hwang JE, Jang HJ, et al. Clinical significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin Cancer Res. 2017. https://doi.org/10.1158/1078-0432.CCR-16-2211.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Apicella M, Corso S, Giordano S. Targeted therapies for gastric cancer: failures and hopes from clinical trials. Oncotarget. 2017;8:57654–69.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gullo I, Grillo F, Molinaro L, et al. Minimum biopsy set for HER2 evaluation in gastric and gastro-esophageal junction cancer. Endosc Int Open. 2015;3:E165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stroun M, Lyautey J, Lederrey C, et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 2001;313:139–42.

    Article  CAS  PubMed  Google Scholar 

  33. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    CAS  PubMed  Google Scholar 

  34. Lo YM, Zhang J, Leung TN, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Botezatu I, Serdyuk O, Potapova G, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem. 2000;46:1078–84.

    CAS  PubMed  Google Scholar 

  36. Bryzgunova OE, Laktionov PP. Extracellular nucleic acids in urine: sources, structure, diagnostic potential. Acta Naturae. 2015;7:48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme [French]. C R Seances Soc Biol Fil. 1948;142:241–3.

    CAS  PubMed  Google Scholar 

  38. Stroun M, Anker P, Maurice P, et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46:318–22.

    Article  CAS  PubMed  Google Scholar 

  39. Olmedillas-Lopez S, Garcia-Arranz M, Garcia-Olmo D. Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther. 2017;21:493–510.

    Article  CAS  PubMed  Google Scholar 

  40. Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48:948–56.

    Article  CAS  PubMed  Google Scholar 

  41. Feng Q, Yang ZY, Zhang JT, et al. Comparison of direct sequencing and amplification refractory mutation system for detecting epidermal growth factor receptor mutation in non-small-cell lung cancer patients: a systematic review and meta-analysis. Oncotarget. 2017;8:59552–62.

    PubMed  PubMed Central  Google Scholar 

  42. Mauger F, How-Kit A, Tost J. COLD-PCR Technologies in the area of personalized medicine: methodology and applications. Mol Diagn Ther. 2017;21:269–83.

    Article  CAS  PubMed  Google Scholar 

  43. Jovelet C, Ileana E, Le Deley MC, et al. Circulating cell-free tumor dna analysis of 50 genes by next-generation sequencing in the prospective MOSCATO trial. Clin Cancer Res. 2016;22:2960–8.

    Article  CAS  PubMed  Google Scholar 

  44. Schwaederle M, Chattopadhyay R, Kato S, et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res. 2017;77:5419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kukita Y, Matoba R, Uchida J, et al. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients. DNA Res. 2015;22:269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olsson E, Winter C, George A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7:1034–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reinert T, Scholer LV, Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2015. https://doi.org/10.1136/gutjnl-2014-308859.

    Article  PubMed  Google Scholar 

  51. Heitzer E, Ulz P, Geigl JB, et al. Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Mol Oncol. 2016;10:494–502.

    Article  CAS  PubMed  Google Scholar 

  52. Hovelson DH, Liu CJ, Wang Y, et al. Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget. 2017;8:89848–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Milbury CA, Zhong Q, Lin J, et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif. 2014;1:8–22.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ulz P, Heitzer E, Geigl JB, et al. Patient monitoring through liquid biopsies using circulating tumor DNA. Int J Cancer. 2017;141:887–96.

    Article  CAS  PubMed  Google Scholar 

  55. Volckmar AL, Sultmann H, Riediger A, et al. A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications. Genes Chromosomes Cancer. 2018;57:123–39.

    Article  CAS  PubMed  Google Scholar 

  56. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo H, Li H, Hu Z, et al. Noninvasive diagnosis and monitoring of mutations by deep sequencing of circulating tumor DNA in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 2016;471:596–602.

    Article  CAS  PubMed  Google Scholar 

  58. Ueda M, Iguchi T, Masuda T, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016;7:62280–91.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hamakawa T, Kukita Y, Kurokawa Y, et al. Monitoring gastric cancer progression with circulating tumour DNA. Br J Cancer. 2015;112:352–6.

    Article  CAS  PubMed  Google Scholar 

  60. Fang WL, Lan YT, Huang KH, et al. Clinical significance of circulating plasma DNA in gastric cancer. Int J Cancer. 2016;138:2974–83.

    Article  CAS  PubMed  Google Scholar 

  61. Gao J, Wang H, Zang W, et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer. Cancer Sci. 2017;108(9):1881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.

    Article  CAS  PubMed  Google Scholar 

  63. Gao YB, Chen ZL, Li JG, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.

    Article  CAS  PubMed  Google Scholar 

  64. Wang K, Johnson A, Ali SM, et al. Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist. 2015;20:1132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takeshita H, Ichikawa D, Komatsu S, et al. Prediction of CCND1 amplification using plasma DNA as a prognostic marker in oesophageal squamous cell carcinoma. Br J Cancer. 2010;102:1378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Komatsu S, Ichikawa D, Hirajima S, et al. Clinical impact of predicting CCND1 amplification using plasma DNA in superficial esophageal squamous cell carcinoma. Dig Dis Sci. 2014;59:1152–9.

    Article  CAS  PubMed  Google Scholar 

  67. Press MF, Ellis CE, Gagnon RC, et al. HER2 Status in advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma for entry to the TRIO-013/LOGiC Trial of Lapatinib. Mol Cancer Ther. 2017;16:228–38.

    Article  CAS  PubMed  Google Scholar 

  68. Andolfo I, Petrosino G, Vecchione L, et al. Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma. BMC Cancer. 2011;11:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park KU, Lee HE, Nam SK, et al. The quantification of HER2 and MYC gene fragments in cell-free plasma as putative biomarkers for gastric cancer diagnosis. Clin Chem Lab Med. 2014;52:1033–40.

    CAS  PubMed  Google Scholar 

  70. Kinugasa H, Nouso K, Tanaka T, et al. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer. 2015;112:1652–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee HE, Park KU, Yoo SB, et al. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur J Cancer. 2013;49:1448–57.

    Article  CAS  PubMed  Google Scholar 

  72. Shoda K, Ichikawa D, Fujita Y, et al. Monitoring the HER2 copy number status in circulating tumor DNA by droplet digital PCR in patients with gastric cancer. Gastric Cancer. 2017;20:126–35.

    Article  CAS  PubMed  Google Scholar 

  73. El Messaoudi S, Rolet F, Mouliere F, et al. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.

    Article  CAS  PubMed  Google Scholar 

  74. Shoda K, Masuda K, Ichikawa D, et al. HER2 amplification detected in the circulating DNA of patients with gastric cancer: a retrospective pilot study. Gastric Cancer. 2015;18:698–710.

    Article  CAS  PubMed  Google Scholar 

  75. Park KU, Lee HE, Park DJ, et al. MYC quantitation in cell-free plasma DNA by real-time PCR for gastric cancer diagnosis. Clin Chem Lab Med. 2009;47:530–6.

    CAS  PubMed  Google Scholar 

  76. Pectasides E, Stachler MD, Derks S, et al. Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov. 2018;8:37–48.

    Article  CAS  PubMed  Google Scholar 

  77. Bang Y-J, Cutsem EV, Mansoor W, et al. A randomized, open-label phase II study of AZD4547 (AZD) versus paclitaxel (P) in previously treated patients with advanced gastric cancer (AGC) with fibroblast growth factor receptor 2 (FGFR2) polysomy or gene amplification (amp): SHINE study. J Clin Oncol. 2015;33:4014.

    Article  CAS  Google Scholar 

  78. Smyth E, Turner NC, Pearson A, et al. Phase II study of AZD4547 in FGFR amplified tumours: Gastroesophageal cancer (GC) cohort pharmacodynamic and biomarker results. J Clin Oncol. 2016. https://doi.org/10.1200/jco.2016.34.4_suppl.154.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pearson A, Smyth E, Babina IS, et al. High-Level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 2016;6:838–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rumiato E, Boldrin E, Malacrida S, et al. Detection of genetic alterations in cfDNA as a possible strategy to monitor the neoplastic progression of Barrett’s esophagus. Transl Res. 2017;190(16–24):e1.

    Google Scholar 

  81. Eisenberger CF, Knoefel WT, Peiper M, et al. Squamous cell carcinoma of the esophagus can be detected by microsatellite analysis in tumor and serum. Clin Cancer Res. 2003;9:4178–83.

    CAS  PubMed  Google Scholar 

  82. Eisenberger CF, Stoecklein NH, Jazra S, et al. The detection of oesophageal adenocarcinoma by serum microsatellite analysis. Eur J Surg Oncol. 2006;32:954–60.

    Article  CAS  PubMed  Google Scholar 

  83. Ma X, Zhu L, Wu X, et al. Cell-Free DNA provides a good representation of the tumor genome despite its biased fragmentation patterns. PLoS One. 2017;12:e0169231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  CAS  PubMed  Google Scholar 

  86. Shi XQ, Xue WH, Zhao SF, et al. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients. Tumour Biol. 2017;39:1–5.

    Google Scholar 

  87. Kwak EL, Ahronian LG, Siravegna G, et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-Amplified esophagogastric cancer. Cancer Discov. 2015;5:1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Petty RD, Dahle-Smith A, Stevenson DAJ, et al. Gefitinib and EGFR gene copy number aberrations in esophageal cancer. J Clin Oncol. 2017;35:2279–87.

    Article  CAS  PubMed  Google Scholar 

  89. Du J, Wu X, Tong X, et al. Circulating tumor DNA profiling by next generation sequencing reveals heterogeneity of crizotinib resistance mechanisms in a gastric cancer patient with MET amplification. Oncotarget. 2017;8:26281–7.

    PubMed  PubMed Central  Google Scholar 

  90. Garcia-Murillas I, Schiavon G, Weigelt B, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7:302ra133.

    Article  PubMed  Google Scholar 

  91. Aurello P, Petrucciani N, Antolino L, et al. Follow-up after curative resection for gastric cancer: is it time to tailor it? World J Gastroenterol. 2017;23:3379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Takahashi Y, Takeuchi T, Sakamoto J, et al. The usefulness of CEA and/or CA19-9 in monitoring for recurrence in gastric cancer patients: a prospective clinical study. Gastric Cancer. 2003;6:142–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Odense University Hospital (grants from Free Research Funds, “Overlægerådets forskningsfond”, and “Frontlinjepuljen”), University of Southern Denmark, and the Frimodt Heineke Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Magaard Koldby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koldby, K.M., Mortensen, M.B., Detlefsen, S. et al. Tumor-specific genetic aberrations in cell-free DNA of gastroesophageal cancer patients. J Gastroenterol 54, 108–121 (2019). https://doi.org/10.1007/s00535-018-1508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-018-1508-5

Keywords

Navigation