Skip to main content

Model Species to Investigate the Origin of Flowers

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2686))

  • 867 Accesses

Abstract

The angiosperms, or flowering plants, arose at least 135 million years ago (Ma) and rapidly diversified to form over 300,000 species alive today. This group appears, however, to have separated from its closest living relatives, the extant gymnosperms, much earlier: over 300 Ma. Representatives of basally-diverging angiosperm lineages are of key importance to studies aimed at reconstructing the most recent common ancestor of living angiosperms, including its morphological, anatomical, eco-physiological and molecular aspects. Furthermore, evo-devo comparisons of angiosperms with living gymnosperms may help to determine how the many novel aspects of angiosperms, including those of the flower, first came about. This chapter reviews literature on the origin of angiosperms and focusses on basally-diverging angiosperms and gymnosperms that show advantages as potential experimental models, reviewing information and protocols for the use of these species in an evo-devo context. The final section suggests a means by which data from living and fossil groups could be integrated to better elucidate evolutionary events that took place on the long stem-lineage that apparently preceded the radiation of living angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barba-Montoya J, dos Reis M, Schneider H et al (2018) Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol 218:819–834. https://doi.org/10.1111/nph.15011

    Article  PubMed  PubMed Central  Google Scholar 

  2. Willis K, McElwain J (2013) The evolution of plants, 2nd edn. OUP, Oxford

    Google Scholar 

  3. Murat F, Armero A, Pont C et al (2017) Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49:490–496. https://doi.org/10.1038/ng.3813

    Article  CAS  PubMed  Google Scholar 

  4. Salomo K, Smith JF, Feild TS et al (2017) The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst Bot 42:607–619. https://doi.org/10.1600/036364417X696438

    Article  PubMed  PubMed Central  Google Scholar 

  5. Budd GE, Mann RP (2018) History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72:2276–2291. https://doi.org/10.1111/evo.13593

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fu Q, Bienvenido Diez J, Pole M et al (2018) An unexpected noncarpellate epigynous flower from the Jurassic of China. elife 7:e38827. https://doi.org/10.7554/eLife.38827

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bateman RM (2020) Hunting the Snark: the flawed search for mythical Jurassic angiosperms. J Exp Bot 71:22–35. https://doi.org/10.1093/jxb/erz411

    Article  CAS  PubMed  Google Scholar 

  8. Coiro M, Doyle JA, Hilton J (2019) How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol 223:83–99. https://doi.org/10.1111/nph.15708

    Article  PubMed  Google Scholar 

  9. Sokoloff DD, Remizowa MV, El ES et al (2019) Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature. New Phytol 228:420–426. https://doi.org/10.1111/nph.15974

    Article  PubMed  Google Scholar 

  10. Gomez B, Daviero-Gomez V, Coiffard C et al (2015) Montsechia, an ancient aquatic angiosperm. Proc Natl Acad Sci U S A 112:10985–10988. https://doi.org/10.1073/pnas.1509241112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magallon S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573. https://doi.org/10.3732/ajb.1200416

    Article  CAS  PubMed  Google Scholar 

  12. Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. https://doi.org/10.1038/nature09916

    Article  CAS  PubMed  Google Scholar 

  13. Zwaenepoel A, Van de Peer Y (2019) Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol Biol Evol 36:1384–1404. https://doi.org/10.1093/molbev/msz088

    Article  CAS  PubMed  Google Scholar 

  14. Feild TS, Arens NC, Doyle JA et al (2004) Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30:82–107. https://doi.org/10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2

    Google Scholar 

  15. Barrett PM, Willis KJ (2001) Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol Rev 76:411–447. https://doi.org/10.1017/S1464793101005735

    Article  CAS  PubMed  Google Scholar 

  16. Byng JW, Chase MW, Christenhusz MJM et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  17. Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140. https://doi.org/10.1086/321919

    Article  Google Scholar 

  18. Sauquet H, von Balthazar M, Magallon S et al (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047. https://doi.org/10.1038/ncomms16047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Endress PK, Doyle JA (2015) Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64:1093–1116. https://doi.org/10.12705/646.1

    Article  Google Scholar 

  20. Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66. https://doi.org/10.3732/ajb.0800047

    Article  PubMed  Google Scholar 

  21. De-Paula OC, Assis LCS, de Craene LPR (2018) Unbuttoning the ancestral flower of angiosperms. Trends Plant Sci 23:551–554. https://doi.org/10.1016/j.tplants.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  22. Sokoloff DD, Remizowa MV, Bateman RM, Rudall PJ (2018) Was the ancestral angiosperm flower whorled throughout? Am J Bot 105:5–15. https://doi.org/10.1002/ajb2.1003

    Article  PubMed  Google Scholar 

  23. Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223. https://doi.org/10.1086/317572

    Article  Google Scholar 

  24. Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489. https://doi.org/10.1093/aob/mcr120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143. https://doi.org/10.3732/ajb.0800311

    Article  PubMed  Google Scholar 

  26. Mao Y, Botella JR, Liu Y, Zhu J-K (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6:421–437. https://doi.org/10.1093/nsr/nwz005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maher MF, Nasti RA, Vollbrecht M et al (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38:84–89. https://doi.org/10.1038/s41587-019-0337-2

    Article  CAS  PubMed  Google Scholar 

  28. Di Stilio VS (2011) Empowering plant evo-devo: virus induced gene silencing validates new and emerging model systems. BioEssays 33:711–718. https://doi.org/10.1002/bies.201100040

    Article  PubMed  Google Scholar 

  29. Liu Y, Wang S, Li L et al (2022) The Cycas genome and the early evolution of seed plants. Nat Plants 8:389–401. https://doi.org/10.1038/s41477-022-01129-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kramer EM (2015) A stranger in a strange land: the utility and interpretation of heterologous expression. Front Plant Sci 6:734. https://doi.org/10.3389/fpls.2015.00734

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vialette-Guiraud ACM, Andres-Robin A, Chambrier P et al (2016) The analysis of Gene Regulatory Networks in plant evo-devo. J Exp Bot 67:2549–2563. https://doi.org/10.1093/jxb/erw119

    Article  CAS  PubMed  Google Scholar 

  32. Bartlett A, O’Malley RC, Huang SC et al (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12:1659–1672. https://doi.org/10.1038/nprot.2017.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poncet V, Birnbaum P, Burtet-Sarramegna V et al (2019) Amborella– bearing witness to the past? Annu Plant Rev Online 2(3). https://doi.org/10.1002/9781119312994.apr0689

  34. Kafer J, Bewick A, Andres-Robin A et al (2022) A derived ZW chromosome system in Amborella trichopoda, representing the sister lineage to all other extant flowering plants. New Phytol 233:1636–1642. https://doi.org/10.1111/nph.17662

    Article  CAS  PubMed  Google Scholar 

  35. Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340. https://doi.org/10.1038/nature04690

    Article  CAS  PubMed  Google Scholar 

  36. Grosse-Veldmann B, Korotkova N, Reinken B et al (2011) Amborella trichopoda- cultivation of the most ancestral angiosperm in botanic gardens. Sibbaldi 9:143–155

    Article  Google Scholar 

  37. Fogliani B, Gateble G, Villegente M et al (2017) The morphophysiological dormancy in Amborella trichopoda seeds is a pleisiomorphic trait in angiosperms. Ann Bot 119:581–590. https://doi.org/10.1093/aob/mcw244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fourquin C, Vinauger-Douard M, Fogliani B et al (2005) Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc Natl Acad Sci U S A 102:4649–4654. https://doi.org/10.1073/pnas.0409577102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim S, Koh J, Yoo MJ et al (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744. https://doi.org/10.1111/j.1365-313X.2005.02487.x

    Article  CAS  PubMed  Google Scholar 

  40. Vialette-Guiraud ACM, Adam H, Finet C et al (2011) Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes. Ann Bot 107:1511–1519. https://doi.org/10.1093/aob/mcr024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arnault G, Vialette ACM, Andres-Robin A et al (2018) Evidence for the extensive conservation of mechanisms of ovule integument development since the most recent common ancestor of living angiosperms. Front Plant Sci 9:1352. https://doi.org/10.3389/fpls.2018.01352

    Article  PubMed  PubMed Central  Google Scholar 

  42. Albert VA, Barbazuk WB, dePamphilis CW et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089. https://doi.org/10.1126/science.1241089

    Article  CAS  Google Scholar 

  43. Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947. https://doi.org/10.1086/424024

    Article  Google Scholar 

  44. Loehne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163. https://doi.org/10.1111/j.1095-8339.2007.00659.x

    Article  Google Scholar 

  45. Yang Y, Sun P, Lv L et al (2020) Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat Plants 6:215–222. https://doi.org/10.1038/s41477-020-0594-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iles WJD, Rudall PJ, Sokoloff DD et al (2012) Molecular phylogenetics of hydatellaceae (nymphaeales): sexual-system homoplasy and a new sectional classification. Am J Bot 99:663–676. https://doi.org/10.3732/ajb.1100524

    Article  PubMed  Google Scholar 

  47. Sokoloff DD, Marques I, Macfarlane TD et al (2019) Cryptic species in an ancient flowering-plant lineage (Hydatellaceae, Nymphaeales) revealed by molecular and micromorphological data. Taxon 68:1–19. https://doi.org/10.1002/tax.12026

    Article  Google Scholar 

  48. Yamada T, Ito M, Kato M (2003) Expression pattern of INNER NOOUTER homologue in Nymphaea (water lily family, Nymphaeaceae). Dev Genes Evol 213:510–513. https://doi.org/10.1007/s00427-003-0350-8

    Article  CAS  PubMed  Google Scholar 

  49. Povilus RA, DaCosta JM, Grassa C et al (2020) Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proc Natl Acad Sci U S A 117:8649–8656. https://doi.org/10.1073/pnas.1922873117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer E, Rodriguez CM (2010) 690. Nymphaea thermarum. Curtis’s Bot Mag 27:318–327. https://doi.org/10.1111/j.1467-8748.2010.01711.x

    Article  Google Scholar 

  51. Povilus RA, Losada JM, Friedman WE (2015) Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. Ann Bot 115:211–226. https://doi.org/10.1093/aob/mcu235

    Article  CAS  PubMed  Google Scholar 

  52. Povilus RA, Diggle PK, Friedman WE (2018) Evidence for parent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage. Proc R Soc B Biol Sci 285:20172491. https://doi.org/10.1098/rspb.2017.2491

    Article  Google Scholar 

  53. Rudall PJ, Remizowa MV, Prenner G et al (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of hydatellaceae and its bearing on the origin of the flower. Am J Bot 96:67–82. https://doi.org/10.3732/ajb.0800027

    Article  PubMed  Google Scholar 

  54. Rudall PJ, Sokoloff DD, Remizowa MV et al (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Am J Bot 94:1073–1092. https://doi.org/10.3732/ajb.94.7.1073

    Article  PubMed  Google Scholar 

  55. Friedman WE, Bachelier JB, Hormaza JI (2012) Embryology in trithuria submersa (hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants. Am J Bot 99:1083–1095. https://doi.org/10.3732/ajb.1200066

    Article  PubMed  Google Scholar 

  56. Tuckett RE, Merritt DJ, Rudall PJ et al (2010) A new type of specialized morphophysiological dormancy and seed storage behaviour in Hydatellaceae, an early-divergent angiosperm family. Ann Bot 105:1053–1061. https://doi.org/10.1093/aob/mcq062

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kynast RG, Joseph JA, Pellicer J et al (2014) Chromosome behavior at the base of the angiosperm radiation: karyology. Am J Bot 101:1447–1455. https://doi.org/10.3732/ajb.1400050

    Article  PubMed  Google Scholar 

  58. Adsul AA, Patil SM, Yadav SR, Bapat VA (2012) In vitro culture of Trithuria konkanensis, one of the smallest angiosperms. Curr Sci 103:979–980

    Google Scholar 

  59. Vialette-Guiraud ACM, Alaux M, Legeai F et al (2011) Cabomba as a model for studies of early angiosperm evolution. Ann Bot 108:589–598. https://doi.org/10.1093/aob/mcr088

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scheers K, Denys L, Jacobs I et al (2019) Cabomba caroliniana Gray (Cabombaceae) invades major waterways in Belgium. Knowl Manag Aquat Ecosyst 420:22. https://doi.org/10.1051/kmae/2019014

    Article  Google Scholar 

  61. Yamada T, Yokota S, Hirayama Y et al (2011) Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J 67:26–36. https://doi.org/10.1111/j.1365-313X.2011.04570.x

    Article  CAS  PubMed  Google Scholar 

  62. Thien L, White D, Yatsu L (1983) The reproductive-biology of a relict Illicium-floridanum Ellis. Am J Bot 70:719–727. https://doi.org/10.2307/2443126

    Article  Google Scholar 

  63. Prakash N, Alexander JH (1984) Self-incompatibility in Austrobaileya scandens. In: Williams EG, Knox RB (eds) Pollination '84. University of Melbourne, Melbourne, pp 214–216

    Google Scholar 

  64. Bernhardt P, Sage T, Weston P et al (2003) The pollination of Trimenia moorei (Trimeniaceae): floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Ann Bot 92:445–458. https://doi.org/10.1093/aob/mcg157

    Article  PubMed  PubMed Central  Google Scholar 

  65. Allen AM, Hiscock SJ (2008) Evolution and phylogeny of self-incompatibility systems in angiosperms. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants. Springer, Berlin-Heidelberg, pp 73–101

    Chapter  Google Scholar 

  66. Williams JH, Friedman WE (2004) The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids, and eudicots. Am J Bot 91:332–351. https://doi.org/10.3732/ajb.91.3.332

    Article  PubMed  Google Scholar 

  67. Bachelier JB, Friedman WE (2011) Female gamete competition in an ancient angiosperm lineage. Proc Natl Acad Sci U S A 108:12360–12365. https://doi.org/10.1073/pnas.1104697108

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qing-tian Z, Shu-tian F, Yi-ming Y et al (2016) De novo transcriptome assembly of Schisandra chinensis Turcz. (Baill.). Genom Data 10:153–154. https://doi.org/10.1016/j.gdata.2016.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang S, Zhang Z, Song W-L et al (2018) Transcriptome analysis of Schisandra sphenanthera discovers putative lignan biosynthesis genes and genetic markers. Pak J Bot 50:1047–1059

    CAS  Google Scholar 

  70. Bliss BJ, Wanke S, Barakat A et al (2013) Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biol 13:13. https://doi.org/10.1186/1471-2229-13-13

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qin L, Hu Y, Wang J et al (2021) Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat Plants 7:1239–1253. https://doi.org/10.1038/s41477-021-00990-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bliss BJ, Landherr L, dePamphilis CW et al (2009) Regeneration and plantlet development from somatic tissues of Aristolochia fimbriata. Plant Cell Tissue Organ Cult 98:105–114. https://doi.org/10.1007/s11240-009-9543-9

    Article  CAS  Google Scholar 

  73. Pabon-Mora N, Suarez-Baron H, Ambrose BA, Gonzalez F (2015) Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Front Plant Sci 6:1095. https://doi.org/10.3389/fpls.2015.01095

    Article  PubMed  PubMed Central  Google Scholar 

  74. Perez-Mesa P, Suarez-Baron H, Ambrose BA et al (2019) Floral MADS-box protein interactions in the early diverging angiosperm Aristolochia fimbriata Cham. (Aristolochiaceae: Piperales). Evol Dev 21:96–110. https://doi.org/10.1111/ede.12282

    Article  CAS  PubMed  Google Scholar 

  75. Rendon-Anaya M, Ibarra-Laclette E, Mendez-Bravo A et al (2019) The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc Natl Acad Sci U S A 116:17081–17089. https://doi.org/10.1073/pnas.1822129116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen J, Hao Z, Guang X et al (2019) Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat Plants 5:18–25. https://doi.org/10.1038/s41477-018-0323-6

    Article  CAS  PubMed  Google Scholar 

  77. Nepi M, Little S, Guarnieri M et al (2017) Phylogenetic and functional signals in gymnosperm ovular secretions. Ann Bot 120:923–936. https://doi.org/10.1093/aob/mcx103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Friedman WE, Carmichael JS (1996) Double fertilization in gnetales: implications for understanding reproductive diversification among seed plants. Int J Plant Sci 157:S77–S94. https://doi.org/10.1086/297405

    Article  Google Scholar 

  79. Magallon S, Sanderson MJ (2002) Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006. https://doi.org/10.3732/ajb.89.12.1991

    Article  CAS  PubMed  Google Scholar 

  80. Mathews S, Clements MD, Beilstein MA (2010) A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans R Soc B Biol Sci 365:383–395. https://doi.org/10.1098/rstb.2009.0233

    Article  Google Scholar 

  81. Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. In: Jeanloz R (ed) Annual review of earth and planetary sciences, vol 40. Annual Reviews, Palo Alto, pp 301–326

    Google Scholar 

  82. Lee EK, Cibrian-Jaramillo A, Kolokotronis S-O et al (2011) A functional phylogenomic view of the seed plants. PLoS Genet 7:e1002411. https://doi.org/10.1371/journal.pgen.1002411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhong B, Deusch O, Goremykin VV et al (2011) Systematic error in seed plant phylogenomics. Genome Biol Evol 3:1340–1348. https://doi.org/10.1093/gbe/evr105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Christenhusz MJM, Reveal JL, Farjon A et al (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70. https://doi.org/10.11646/phytotaxa.19.1.3

    Article  Google Scholar 

  85. Niu S, Yuan H, Sun X et al (2016) A transcriptomics investigation into pine reproductive organ development. New Phytol 209:1278–1289. https://doi.org/10.1111/nph.13680

    Article  CAS  PubMed  Google Scholar 

  86. Giacomello S, Salmen F, Terebieniec BK et al (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061. https://doi.org/10.1038/nplants.2017.61

    Article  CAS  PubMed  Google Scholar 

  87. Zhang PY, Tan HTW, Pwee KH, Kumar PP (2004) Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J 37:566–577. https://doi.org/10.1046/j.1365-313X.2003.01983.x

    Article  CAS  PubMed  Google Scholar 

  88. Moyroud E, Monniaux M, Thevenon E et al (2017) A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol 216:469–481. https://doi.org/10.1111/nph.14483

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y-Q, Melzer R, Theissen G (2010) Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of “floral quartets”. Plant J 64:177–190. https://doi.org/10.1111/j.1365-313X.2010.04325.x

    Article  CAS  PubMed  Google Scholar 

  90. Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31:457–475. https://doi.org/10.1046/j.1365-313X.2002.01375.x

    Article  CAS  PubMed  Google Scholar 

  91. Uddenberg D, Akhter S, Ramachandran P et al (2015) Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. Front Plant Sci 6:970. https://doi.org/10.3389/fpls.2015.00970

    Article  PubMed  PubMed Central  Google Scholar 

  92. Uddenberg D, Reimegard J, Clapham D et al (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161:813–823. https://doi.org/10.1104/pp.112.207746

    Article  CAS  PubMed  Google Scholar 

  93. Scutt CP (2018) The origin of angiosperms. Evol Dev Biol Ref Guide:1–20

    Google Scholar 

  94. Shi G, Herrera F, Herendeen PS et al (2021) Mesozoic cupules and the origin of the angiosperm second integument. Nature 594:223–226. https://doi.org/10.1038/s41586-021-03598-w

    Article  CAS  PubMed  Google Scholar 

  95. Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int J Plant Sci 169:816–843. https://doi.org/10.1086/589887

    Article  Google Scholar 

  96. Leebens-Mack JH, Barker MS, Carpenter EJ et al (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–685. https://doi.org/10.1038/s41586-019-1693-2

    Article  CAS  Google Scholar 

  97. Flores-Tornero M, Proost S, Mutwil M et al (2019) Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reprod 32:15–27. https://doi.org/10.1007/s00497-019-00361-0

    Article  CAS  PubMed  Google Scholar 

  98. Rivarola Sena AC, Andres-Robin A, Vialette AC et al (2022) Custom methods to identify conserved genetic modules applied to novel transcriptomic data from Amborella trichopoda. J Exp Bot 73:2487–2498. https://doi.org/10.1093/jxb/erac044

    Article  CAS  PubMed  Google Scholar 

  99. Leitch IJ, Hanson L (2002) DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Bot J Linn Soc 140:175–179. https://doi.org/10.1046/j.1095-8339.2002.00096.x

    Article  Google Scholar 

  100. Povilus RA, Friedman WE (2022) Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction. Plant Reprod 35:161–178. https://doi.org/10.1007/s00497-022-00438-3

    Article  CAS  PubMed  Google Scholar 

  101. Pellicer J, Kelly LJ, Magdalena C, Leitch IJ (2013) Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56:437–449. https://doi.org/10.1139/gen-2013-0039

    Article  CAS  PubMed  Google Scholar 

  102. Wu Q, Wu J, Li S-S et al (2016) Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics 17:897. https://doi.org/10.1186/s12864-016-3226-9

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yoo M-J, Chanderbali AS, Altman NS et al (2010) Evolutionary trends in the floral transcriptome: insights from one of the basalmost angiosperms, the water lily Nuphar advena (Nymphaeaceae). Plant J 64:687–698. https://doi.org/10.1111/j.1365-313X.2010.04357.x

    Article  CAS  PubMed  Google Scholar 

  104. Marques I, Montgomery SA, Barker MS et al (2016) Transcriptome-derived evidence supports recent polyploidization and a major phylogeographic division in Trithuria submersa (Hydatellaceae, Nymphaeales). New Phytol 210:310–323. https://doi.org/10.1111/nph.13755

    Article  CAS  PubMed  Google Scholar 

  105. Bharathan G, Lambert G, Galbraith D (1994) Nuclear-DNA content of monocotyledons and related taxa. Am J Bot 81:381–386. https://doi.org/10.2307/2445466

    Article  Google Scholar 

  106. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  107. Yang Y, Xu M, Luo Q et al (2014) De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene 534:155–162. https://doi.org/10.1016/j.gene.2013.10.073

    Article  CAS  PubMed  Google Scholar 

  108. Wang K, Li M, Gao F et al (2012) Identification of conserved and novel microRNAs from Liriodendron chinense floral tissues. PLoS One 7:e44696. https://doi.org/10.1371/journal.pone.0044696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lorenz WW, Ayyampalayam S, Bordeaux JM et al (2012) Conifer DBMagic: a database housing multiple de novo transcriptome assemblies for 12 diverse conifer species. Tree Genet Genomes 8:1477–1485. https://doi.org/10.1007/s11295-012-0547-y

    Article  Google Scholar 

  110. O’Brien IEW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99

    Article  Google Scholar 

  111. Joyner KL, Wang XR, Johnston JS et al (2001) DNA content for Asian pines parallels New World relatives. Can J Bot Rev Can Bot 79:192–196. https://doi.org/10.1139/b00-151

    Article  Google Scholar 

  112. Niu S, Li J, Bo W et al (2022) The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204–217. https://doi.org/10.1016/j.cell.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  113. Du J, Zhang Z, Zhang H, Junhong T (2017) EST-SSR marker development and transcriptome sequencing analysis of different tissues of Korean pine (Pinus koraiensis Sieb. et Zucc.). Biotechnol Biotechnol Equip 31:679–689. https://doi.org/10.1080/13102818.2017.1331755

    Article  CAS  Google Scholar 

  114. Fuchs J, Jovtchev G, Schubert I (2008) The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosom Res 16:891–898. https://doi.org/10.1007/s10577-008-1252-4

    Article  CAS  Google Scholar 

  115. Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. https://doi.org/10.1038/nature12211

    Article  CAS  PubMed  Google Scholar 

  116. Little SA, Boyes IG, Donaleshen K et al (2016) A transcriptomic resource for Douglas-fir seed development and analysis of transcription during late megagametophyte development. Plant Reprod 29:273–286. https://doi.org/10.1007/s00497-016-0291-9

    Article  CAS  PubMed  Google Scholar 

  117. Neale DB, McGuire PE, Wheeler NC et al (2017) The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3-Genes Genomes Genet 7:3157–3167. https://doi.org/10.1534/g3.117.300078

    Article  CAS  Google Scholar 

  118. Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow cytometric determination of genome size in the Taxodiaceae, Cuprssaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66:307–311

    Article  Google Scholar 

  119. Zhou W, Chen Q, Wang X-B et al (2019) De novo assembly of the Platycladus orientalis (L.) Franco transcriptome provides insight into the development and pollination mechanism of female cone based on RNA-Seq data. Sci Rep 9:10191. https://doi.org/10.1038/s41598-019-46696-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pirone-Davies C, Prior N, von Aderkas P et al (2016) Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production. Ann Bot 117:973–984. https://doi.org/10.1093/aob/mcw026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang L, Lu Z, Li W et al (2016) Global comparative analysis of expressed genes in ovules and leaves of Ginkgo biloba L. Tree Genet Genomes 12:29. https://doi.org/10.1007/s11295-016-0989-8

    Article  Google Scholar 

  122. Wang L, Zhao J, Luo K et al (2016) Deep sequencing discovery and profiling of conserved and novel miRNAs in the ovule of Ginkgo biloba. Trees Struct Funct 30:1557–1567. https://doi.org/10.1007/s00468-016-1389-2

    Article  CAS  Google Scholar 

  123. Smarda P, Vesely P, Smerda J et al (2016) Polyploidy in a ‘living fossil’ Ginkgo biloba. New Phytol 212:11–14. https://doi.org/10.1111/nph.14062

    Article  PubMed  Google Scholar 

  124. Guan R, Zhao Y, Zhang H et al (2016) Draft genome of the living fossil Ginkgo biloba. Gigascience 5:49. https://doi.org/10.1186/s13742-016-0154-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scutt CP, Vandenbussche M (2014) Current trends and future directions in flower development research. Ann Bot 114:1399–1406. https://doi.org/10.1093/aob/mcu224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks are due to Amélie Andres-Robin for help in producing plant photos and to the editors for inviting this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Scutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scutt, C.P. (2023). Model Species to Investigate the Origin of Flowers. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics