Skip to main content

In Silico Structure-Based Vaccine Design

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

  • 1140 Accesses

Abstract

Structure-based vaccine design (SBVD) is an important technique in computational vaccine design that uses structural information on a targeted protein to design novel vaccine candidates. This increasing ability to rapidly model structural information on proteins and antibodies has provided the scientific community with many new vaccine targets and novel opportunities for future vaccine discovery. This chapter provides a comprehensive overview of the status of in silico SBVD and discusses the current challenges and limitations. Key strategies in the field of SBVD are exemplified by a case study on design of COVID-19 vaccines targeting SARS-CoV-2 spike protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DVS, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368

    Article  CAS  PubMed  Google Scholar 

  2. Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ, Holman LA, Hickman SP, Berkowitz NM, Gordon IJ, Yamshchikov GV, Gaudinski MR, Kumar A, Chang LA, Moin SM, Hill JP, DiPiazza AT, Schwartz RM, Kueltzo L, Cooper JW, Chen P, Stein JA, Carlton K, Gall JG, Nason MC, Kwong PD, Chen GL, Mascola JR, McLellan JS, Ledgerwood JE, Graham BS, Team VRCS (2019) A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365(6452):505–509. https://doi.org/10.1126/science.aav9033

    Article  CAS  PubMed  Google Scholar 

  3. Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM (2020) SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 10:587269. https://doi.org/10.3389/fcimb.2020.587269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Piplani S, Singh PK, Winkler DA, Petrovsky N (2021) In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci Rep 11(1):13063. https://doi.org/10.1038/s41598-021-92388-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez-Flores D, Zepeda-Cervantes J, Cruz-Resendiz A, Aguirre-Sampieri S, Sampieri A, Vaca L (2021) SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol 12:701501. https://doi.org/10.3389/fimmu.2021.701501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Goodsell DS, Ghosh S, Kramer Green R, Guranovic V, Henry J, Hudson BP, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Whetstone S, Young JY, Zardecki C (2022) RCSB Protein Data Bank: celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci 31(1):187–208. https://doi.org/10.1002/pro.4213

    Article  CAS  PubMed  Google Scholar 

  8. Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91(2):508–517. https://doi.org/10.1529/biophysj.106.082313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science (New York, NY) 181(4096):223–230. https://doi.org/10.1126/science.181.4096.223

    Article  CAS  Google Scholar 

  10. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. https://doi.org/10.1146/annurev.biophys.29.1.291

    Article  PubMed  Google Scholar 

  12. Arnold K, Kiefer F, Kopp J, Battey JND, Podvinec M, Westbrook JD, Berman HM, Bordoli L, Schwede T (2009) The Protein Model Portal. J Struct Funct Genom 10(1):1–8. https://doi.org/10.1007/s10969-008-9048-5

    Article  CAS  Google Scholar 

  13. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42(Database issue):D336–D346. https://doi.org/10.1093/nar/gkt1144

    Article  CAS  PubMed  Google Scholar 

  14. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37(Database issue):D387–D392. https://doi.org/10.1093/nar/gkn750

    Article  CAS  PubMed  Google Scholar 

  15. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1(1):7. https://doi.org/10.1186/1752-153X-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6(1):19. https://doi.org/10.1186/1472-6807-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):e1000585. https://doi.org/10.1371/journal.pcbi.1000585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363, 389. https://doi.org/10.1016/s1093-3263(98)00002-3

    Article  CAS  PubMed  Google Scholar 

  19. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10(1):168. https://doi.org/10.1186/1471-2105-10-168

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916. https://doi.org/10.1093/bioinformatics/bti315

    Article  CAS  PubMed  Google Scholar 

  21. Ghersi D, Sanchez R (2009) EasyMIFs and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures. Bioinformatics 25(23):3185–3186. https://doi.org/10.1093/bioinformatics/btp562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henrich S, Salo-Ahen OMH, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219. https://doi.org/10.1002/jmr.984

    Article  CAS  PubMed  Google Scholar 

  23. Nisius B, Sha F, Gohlke H (2012) Structure-based computational analysis of protein binding sites for function and druggability prediction. J Biotechnol 159(3):123–134. https://doi.org/10.1016/j.jbiotec.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  24. Xie Z-R, Hwang M-J (2015) Methods for predicting protein-ligand binding sites. Methods Mol Biol 1215:383–398. https://doi.org/10.1007/978-1-4939-1465-4_17

    Article  CAS  PubMed  Google Scholar 

  25. López-Vallejo F, Caulfield T, Martínez-Mayorga K, Giulianotti MA, Nefzi A, Houghten RA, Medina-Franco JL (2011) Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen 14(6):475–487. https://doi.org/10.2174/138620711795767866

    Article  PubMed  Google Scholar 

  26. Heberlé G, de Azevedo WF (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18(9):1339–1352. https://doi.org/10.2174/092986711795029573

    Article  PubMed  Google Scholar 

  27. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47(4):409–443. https://doi.org/10.1002/prot.10115

    Article  CAS  PubMed  Google Scholar 

  28. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26(5):215–239. https://doi.org/10.1002/jmr.2266

    Article  CAS  PubMed  Google Scholar 

  30. Buzko OV, Bishop AC, Shokat KM (2002) Modified AutoDock for accurate docking of protein kinase inhibitors. J Comput Aided Mol Des 16(2):113–127. https://doi.org/10.1023/a:1016366013656

    Article  CAS  PubMed  Google Scholar 

  31. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57(2):225–242. https://doi.org/10.1002/prot.20149

    Article  CAS  PubMed  Google Scholar 

  32. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12(2):190–196. https://doi.org/10.1016/s0959-440x(02)00308-1

    Article  CAS  PubMed  Google Scholar 

  33. Kuzmanic A, Zagrovic B (2010) Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J 98(5):861–871. https://doi.org/10.1016/j.bpj.2009.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guterres H, Im W (2020) Improving protein-ligand docking results with high-throughput molecular dynamics simulations. J Chem Inf Model 60(4):2189–2198. https://doi.org/10.1021/acs.jcim.0c00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teodoro ML, Kavraki LE (2003) Conformational flexibility models for the receptor in structure based drug design. Curr Pharm Des 9(20):1635–1648. https://doi.org/10.2174/1381612033454595

    Article  CAS  PubMed  Google Scholar 

  36. Winkler DA (2020) Ligand entropy is hard but should not be ignored. J Chem Inf Model 60(10):4421–4423. https://doi.org/10.1021/acs.jcim.0c01146

    Article  CAS  PubMed  Google Scholar 

  37. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474. https://doi.org/10.1021/ci900056c

    Article  CAS  PubMed  Google Scholar 

  38. Lape M, Elam C, Paula S (2010) Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase. Biophys Chem 150(1–3):88–97. https://doi.org/10.1016/j.bpc.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42(25):5100–5109. https://doi.org/10.1021/jm990352k

    Article  CAS  PubMed  Google Scholar 

  40. Ashoor D, Ben Khalaf N, Marzouq M, Jarjanazi H, Fathallah MD (2020) SARS-CoV-2 RBD mutations, ACE2 genetic polymorphism, and stability of the virus-receptor complex: The COVID-19 host-pathogen nexus. bioRxiv:2020.2010.2023.352344. https://doi.org/10.1101/2020.10.23.352344

  41. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell

    Google Scholar 

  42. Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J, Piplani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chataway T, Colella A, Triccas J, Ross TM, Petrovsky N (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39(40):5940–5953. https://doi.org/10.1016/j.vaccine.2021.07.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Honda-Okubo Y, Baldwin J, Bowen R, Bielefeldt-Ohmann H, Petrovsky N (2022) Covax-19/Spikogen(R) vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine 40(23):3182–3192. https://doi.org/10.1016/j.vaccine.2022.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tabynov K, Orynbassar M, Yelchibayeva L, Turebekov N, Yerubayev T, Matikhan N, Yespolov T, Petrovsky N, Tabynov K (2022) A spike protein-based subunit SARS-CoV-2 vaccine for pets: safety, immunogenicity, and protective efficacy in juvenile cats. Front Vet Sci 9:815978. https://doi.org/10.3389/fvets.2022.815978

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tabarsi P, Anjidani N, Shahpari R, Mardani M, Sabzvari A, Yazdani B, Roshanzamir K, Bayatani B, Taheri A, Petrovsky N, Li L, Barati S (2022) Safety and immunogenicity of SpikoGen(R), an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: a phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clin Microbiol Infect 28(9):1263–1271. https://doi.org/10.1016/j.cmi.2022.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tabarsi P, Anjidani N, Shahpari R, Roshanzamir K, Fallah N, Andre G, Petrovsky N, Barati S (2022) Immunogenicity and safety of SpikoGen(R), an adjuvanted recombinant SARS-CoV-2 spike protein vaccine as a homologous and heterologous booster vaccination: a randomized placebo-controlled trial. Immunology 167(3):340–353. https://doi.org/10.1111/imm.13540

    Article  CAS  PubMed  Google Scholar 

  47. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song W, Gui M, Wang X, Xiang Y (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14(8):e1007236

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu K, Peng G, Wilken M, Geraghty RJ, Li F (2012) Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem 287(12):8904–8911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yan Y, Tao H, He J, Huang S-Y (2020) The HDOCK server for integrated protein–protein docking. Nat Protoc 15(5):1829–1852. https://doi.org/10.1038/s41596-020-0312-x

    Article  CAS  PubMed  Google Scholar 

  51. Piplani S, Singh PK, Winkler DA, Petrovsky N (2020) In silico comparison of spike protein-ACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2 virus. arXiv preprint arXiv:2005:06199

    Google Scholar 

  52. Yan Y, Zhang D, Zhou P, Li B, Huang SY (2017) HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45(W1):W365–W373. https://doi.org/10.1093/nar/gkx407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hessa B, Lindahlad E (2015) GROMACS; high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  54. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041. https://doi.org/10.1073/pnas.181342398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumari R, Kumar R, Open Source Drug Discovery Consortium, Lynn A (2014) g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54 (7):1951–1962. https://doi.org/10.1021/ci500020m

  56. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119(16):9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

    Article  CAS  PubMed  Google Scholar 

  57. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807):221–224. https://doi.org/10.1038/s41586-020-2179-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hutchinson G, Abiona O, Ziwawo C, Werner A, Ellis D, Tsybovsky Y, Leist S, Palandjian C, West A, Fritch E, Wang N, Wrapp D, Boyoglu-Barnum S, Ueda G, Baker D, Kanekiyo M, McLellan J, Baric R, King N, Graham B, Corbett K (2022) Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive protection across divergent subgroups. Res Sq. https://doi.org/10.21203/rs.3.rs-2199814/v1

  59. Crawford KHD, Eguia R, Dingens AS, Loes AN, Malone KD, Wolf CR, Chu HY, Tortorici MA, Veesler D, Murphy M, Pettie D, King NP, Balazs AB, Bloom JD (2020) Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 12(5). https://doi.org/10.3390/v12050513

  60. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 364(2):272–280

    Article  CAS  PubMed  Google Scholar 

  61. Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng C-TK, Petrovsky N (2015) Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 89(6):2995–3007

    Article  CAS  PubMed  Google Scholar 

  62. Adney DR, Wang L, Van Doremalen N, Shi W, Zhang Y, Kong W-P, Miller MR, Bushmaker T, Scott D, de Wit E (2019) Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses 11(3):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Petrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Piplani, S., Winkler, D., Honda-Okubo, Y., Khanna, V., Petrovsky, N. (2023). In Silico Structure-Based Vaccine Design. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics