Skip to main content

Vaccine Design and Immunoinformatics

  • Chapter
  • First Online:
Advances in Bioinformatics

Abstract

The emanation use of vaccines has shown tremendous applications of computational algorithms that can be used for amelioration of health globally. Vaccine Research has become a center area of research that embarks its applications to save several lives, reduced cost of treatment, and potential inhibitor of infectious diseases. The stimulating progress of immunoinformatics approach with the concept of peptide vaccines has proven to be productive way to target unknown antigenic proteins, complex life-cycle of infectious diseases, variability of immune system response, and long term protection. This Chapter reviews the comprehensive database analysis for the construction of vaccine design targeting epitope based approach which has proven to be a very robust method for the characterization of vaccine targets for systemic models of vaccine. The design of vaccine from traditional to computational methods enables to understand the complexity of disease causing organisms and their hyper variable nature. The investigations of vaccine include rigorous methods that validate the designed vaccine to be antigenic, immunogenic, and non-allergenic and higher solubility and furthermore predicted designed vaccine should have the capability to trigger high immune responses. The docking and simulation of the predicted peptides provide insight information of the binding energy and the stability of vaccine candidates for a better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam H, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpi JL (2012) MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics 28(9):1278–1279

    Article  CAS  Google Scholar 

  • Alessandro S, Rino R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541

    Google Scholar 

  • Angus NO, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC (2020) Immunoinformatics and vaccine development: an overview. Immunotargets Ther 9:13–30

    Article  Google Scholar 

  • Arafat RO, Pervin T, Mia M, Hossain M, Shahnaij M, Mahmud S, Kaderi Kibria KM (2017) Vaccinomics approach for designing potential peptide vaccine by targeting Shigella spp. Serine protease autotransporter subfamily protein SigA. J Immunol Res. https://doi.org/10.1155/2017/6412353

  • Atanasova M, Dimitrov I, Flower DR, Doytchinova I (2013) EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Eng Des Sel 26(10):631–634

    Article  CAS  PubMed  Google Scholar 

  • Aurelien G, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucl Acids Res 39:W270–W277

    Article  CAS  Google Scholar 

  • Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 7(1):119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birkir R, Alvarez B, Paul S, Peters B, Nielsen M (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucl Acids Res. https://doi.org/10.1093/nar/gkaa379

  • Clarisa B P-d-S, Soares I d S, Rosa DS (2018) Editorial: epitope discovery and synthetic vaccine design. Front Immunol 9:826

    Article  CAS  Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. proceedings of the 2’nd workshop on algorithms in bioinformatics (WABI) Rome, Italy. Lecture Notes in Computer Science, vol 2452. Springer, pp 185–200

    Google Scholar 

  • Fiser A, Feig M, Brooks CL, Sali A (2002) Evolution and physics in comparative protein structure modeling. Acc Chem Res. 35:413–421. https://doi.org/10.1021/ar010061h

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS, Morris GM, Halliday RS, Huey R, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19:1639–1662

    Article  Google Scholar 

  • Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinf 2:63–66

    CAS  Google Scholar 

  • Hamrouni S, Bras-Gonçalves R, Kidar A, Aoun K, Chamakh-Ayari R, Petitdidier E, Messaoudi Y, Pagniez J, Lemesre JL, Meddeb-Garnaoui A (2020) Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl Trop Dis 14(3):e0008093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber Sietske R, van Beek J, de Jonge J, Luytjes W, van Baarle D (2014) T cell responses to viral infections – opportunities for peptide vaccination. Front Immunol 5:171

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  • Irini AD, Darren RF (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf 8:4

    Article  CAS  Google Scholar 

  • James CP, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  • Jens Vindahl K, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comp Biol 8(12):e1002829

    Article  CAS  Google Scholar 

  • Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154(3):394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucl Acids Res. https://doi.org/10.1093/nar/gkx352

  • Kaur H, Garg A, Raghava GPS (2007) PEPstr: A de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett 14(7):626–630

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Arora N, Jamakhani MA, Malik S, Kumar P, Anjum F, Tripathi S, Mishra A, Prasad A (2020) Development of multi-epitope chimeric vaccine against Taenia solium by exploring its proteome: an in silico approach. Exp Rev Vaccines 19(1):105–114

    Article  CAS  Google Scholar 

  • Kelley L, Mezulis S, Yates C et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocol 10(6):845–858

    Article  CAS  Google Scholar 

  • Khan F, Srivastava V, Kumar A (2017) Epitope-based peptides prediction from proteome of Enterotoxigenic E coli. Int J Peptide Res Ther 24(2):323–336

    Article  CAS  Google Scholar 

  • Khan F, Srivastava V, Kumar A (2018) Computational identification and characterization of potential T-Cell epitope for the utility of vaccine design against Enterotoxigenic Escherichia coli. Int J Peptide Res Ther (Springer) 25:289–302

    Article  CAS  Google Scholar 

  • Krawczyk K, Liu X, Baker T, Shi J, Deane CM (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30(16):2288–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinf 8:424

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014) Peptide vaccine: progress and challenges. Vaccine 2(3):515–536

    Article  CAS  Google Scholar 

  • Lippolis JD et al (2002) Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol 169:5089–5097

    Article  PubMed  Google Scholar 

  • Monterrubio-López GP, Ribas-Aparicio RM (2015) Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. Biomed Res Int 12:1–16

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  • Morten K, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protocols 7:1511–1522

    Article  CAS  Google Scholar 

  • Negi SS, Braun W (2009) Automated detection of conformational epitopes using phage display peptide sequences. Bioinform Biol Insights 3:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E (2014) A novel multi-epitope peptide vaccine against cancer: an in silico approach. Theor Biol 349:121–134

    Article  CAS  Google Scholar 

  • Oyarzun P, Kobe B (2015) Computer-aided design of T-cell epitope-based vaccines: addressing population coverage. Int J Immunogenet 42(5):313–321

    Article  CAS  PubMed  Google Scholar 

  • Pahil S, Taneja N, Ansari HR, Raghava GPS (2017) In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity. PLoS One 12:8

    Article  CAS  Google Scholar 

  • Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK (2018) Immunoinformatics approaches to design a novel multiepitope subunit vaccine against HIV infection. Vaccine 36:2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  • Patronov A, Dimitrov I, Flower DR, Doytchinova I (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Str Biol 11:32

    Article  CAS  Google Scholar 

  • Pierre D, Oliver K (2006) SVMHC: a server for prediction of MHC-binding peptides. Nucl Acids Res 34:W194–W197

    Article  CAS  Google Scholar 

  • Ponomarenko JV, Bui H, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinf 9:514

    Article  CAS  Google Scholar 

  • Robinson J, Halliwell JA, Hayhurst JH, Flicek P, Parham P, Marsh SGE (2015) The IPD and IMGT/HLA database: allele variant databases. Nucl Acids Res 43:D423–D431

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Artificial immune systems. ICARIS 2004. Lecture Notes in Computer Science, vol 3239. Springer, Berlin. https://doi.org/10.1007/978-3-540-30220-9_16.

    Chapter  Google Scholar 

  • Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Bioinf 65:40–48

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Raghava GPS (2003) ProPred I: prediction of HLA class-I binding sites. Bioinformatics 19:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131(2):153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem:455–461

    Google Scholar 

  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2018) The Immune epitope database (IEDB). Nucl Acids Res. https://doi.org/10.1093/nar/gky1006

  • Xiang Z, He Y (2009) Vaxign: a web-based vaccine target design program for reverse vaccinology. Proc Vaccinol 1(1):23–29

    Article  CAS  Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7):1715–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L (2018) Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol 15:182–184

    Article  CAS  PubMed  Google Scholar 

  • Zobayer N, Hossain AA, Rahman MA (2019) A combined view of B-cell epitope features in antigens. Bioinformation 15(7):530–534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, F., Kumar, A. (2021). Vaccine Design and Immunoinformatics. In: Singh, V., Kumar, A. (eds) Advances in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-33-6191-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6191-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6190-4

  • Online ISBN: 978-981-33-6191-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics