Skip to main content

Isolation of Mammalian Peroxisomes by Density Gradient Centrifugation

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

Abstract

Sophisticated organelle fractionation strategies were the workhorse of early peroxisome research and led to the characterization of the principal functions of the organelle. However, even in the era of molecular biology and “omics” technologies, they are still of importance to unravel peroxisome-specific proteomes, confirm the localization of still uncharacterized proteins, analyze peroxisome metabolism or lipid composition, or study their protein import mechanism. To isolate and analyze peroxisomes for these purposes, density gradient centrifugation still represents a highly reliable and reproducible technique. This article describes two protocols to purify peroxisomes from either liver tissue or the HepG2 hepatoma cell line. The protocol for liver enables purification of peroxisome fractions with high purity (95%) and is therefore suitable to study low-abundant peroxisomal proteins or analyze their lipid composition, for example. The protocol presented for HepG2 cells is not suitable to gain highly pure peroxisomal fractions but is intended to be used for gradient profiling experiments and allows easier manipulation of the peroxisomal compartment, e.g., by gene knockdown or protein overexpression for functional studies. Both purification methods therefore represent complementary tools to be used to analyze different aspects of peroxisome physiology. Please note that this is an updated version of a protocol, which has been published in a former volume of Methods in Molecular Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islinger M, Manner A, Völkl A (2018) The craft of peroxisome purification – a technical survey through the decades. Subcell Biochem 89:85–122. https://doi.org/10.1007/978-981-13-2233-4_4

    Article  CAS  PubMed  Google Scholar 

  2. Baudhuin P, Beaufay H, De Duve C (1965) Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol 26:219–243. https://doi.org/10.1083/jcb.26.1.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357. https://doi.org/10.1152/physrev.1966.46.2.323

    Article  PubMed  Google Scholar 

  4. Leighton F, Poole B, Beaufay H, Baudhuin P, Coffey JW, Fowler S, De Duve C (1968) The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol 37:482–513. https://doi.org/10.1083/jcb.37.2.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rickwood D, Birnie GD (1975) Metrizamide, a new density-gradient medium. FEBS Lett 50:102–110. https://doi.org/10.1016/0014-5793(75)80467-4

    Article  CAS  PubMed  Google Scholar 

  6. Volkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257–265. https://doi.org/10.1111/j.1432-1033.1985.tb08920.x

    Article  CAS  PubMed  Google Scholar 

  7. Hajra AK, Wu D (1985) Preparative isolation of peroxisomes from liver and kidney using metrizamide density gradient centrifugation in a vertical rotor. Anal Biochem 148:233–244. https://doi.org/10.1016/0003-2697(85)90651-7

    Article  CAS  PubMed  Google Scholar 

  8. Crane DI, Hemsley AC, Masters CJ (1985) Purification of peroxisomes from livers of normal and clofibrate-treated mice. Anal Biochem 148:436–445. https://doi.org/10.1016/0003-2697(85)90250-7

    Article  CAS  PubMed  Google Scholar 

  9. Rickwood D, Ford T, Graham J (1982) Nycodenz: a new nonionic iodinated gradient medium. Anal Biochem 123:23–31. https://doi.org/10.1016/0003-2697(82)90618-2

    Article  CAS  PubMed  Google Scholar 

  10. Ford T, Graham J, Rickwood D (1994) Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal Biochem 220:360–366. https://doi.org/10.1006/abio.1994.1350

    Article  CAS  PubMed  Google Scholar 

  11. Islinger M, Luers GH, Li KW, Loos M, Volkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069. https://doi.org/10.1074/jbc.M610910200

    Article  CAS  PubMed  Google Scholar 

  12. Wiese S et al (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057. https://doi.org/10.1074/mcp.M700169-MCP200

    Article  CAS  PubMed  Google Scholar 

  13. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane. PLoS One 4:e5090. https://doi.org/10.1371/journal.pone.0005090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am J Physiol Cell Physiol 287:C1623–C1635. https://doi.org/10.1152/ajpcell.00142.2004

    Article  CAS  PubMed  Google Scholar 

  15. Islinger M, Luers GH, Zischka H, Ueffing M, Volkl A (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6:804–816. https://doi.org/10.1002/pmic.200401347

    Article  CAS  PubMed  Google Scholar 

  16. Schrader M, Baumgart E, Volkl A, Fahimi HD (1994) Heterogeneity of peroxisomes in human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations. Eur J Cell Biol 64:281–294

    CAS  PubMed  Google Scholar 

  17. Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschner D, Azadi AS, Godinho LF, Costina V, Findeisen P, Manner A, Islinger M, Schrader M (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216:331–342. https://doi.org/10.1083/jcb.201607055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428. https://doi.org/10.1074/jbc.M305623200

    Article  CAS  PubMed  Google Scholar 

  19. Camoes F et al (2014) New insights into the peroxisomal protein inventory: acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta 1853:111–125. https://doi.org/10.1016/j.bbamcr.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  20. Manner A, Islinger M (2017) Isolation of peroxisomes from rat liver and cultured hepatoma cells by density gradient centrifugation. Methods Mol Biol 1595:1–11. https://doi.org/10.1007/978-1-4939-6937-1_1

    Article  CAS  PubMed  Google Scholar 

  21. Islinger M, Abdolzade-Bavil A, Liebler S, Weber G, Volkl A (2012) Assessing heterogeneity of peroxisomes: isolation of two subpopulations from rat liver. Methods Mol Biol 909:83–96. https://doi.org/10.1007/978-1-61779-959-4_6

    Article  CAS  PubMed  Google Scholar 

  22. He M, Pei Z, Mohsen AW, Watkins P, Murdoch G, Van Veldhoven PP, Ensenauer R, Vockley J (2011) Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab 102:418–429. https://doi.org/10.1016/j.ymgme.2010.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all colleagues who donated antibodies used in this work. We would further like to thank D. Türker and Dr. S. Kühl for technical assistance and Dr. R. Carmichael for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Islinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manner, A., Islinger, M. (2023). Isolation of Mammalian Peroxisomes by Density Gradient Centrifugation. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics