Skip to main content

Aβ and Tau Prions Causing Alzheimer’s Disease

  • Protocol
  • First Online:
Alzheimer’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2561))

Abstract

Studies show that patients with Alzheimer’s disease (AD) have both Aβ and tau prions, and thus, AD is a double-prion disease. AD patients with the greatest longevity exhibited low levels of both Aβ and tau prions; tau prions were nearly absent in the brains of almost half of the patients who lived beyond 80 years of age. Using cellular bioassays for prions in postmortem samples, we found that both Aβ and tau proteins misfold into prions leading to AD, which is either a sporadic or familial dementing disorder. Although AD is transmissible experimentally, there is no evidence that AD is either communicable or contagious. Since the progression of AD correlates poorly with insoluble Aβ in the central nervous system (CNS), it was difficult to distinguish between inert amyloids and Aβ prions. To measure the progression of AD, we devised rapid bioassays to measure the abundance of isoform-specific Aβ prions in the brains of transgenic (Tg) mice and in postmortem human CNS samples from AD victims and people who died of other neurodegenerative diseases (NDs). We found significant correlations between the longevity of individuals with AD, sex, and genetic background, despite the fact that all postmortem brain tissue had essentially the same confirmed neuropathology.

Although brains from all AD patients had measurable levels of Aβ prions at death, the oldest individuals had lower Aβ prion levels than the younger ones. Additionally, the long-lived individuals had low tau prion levels that correlated with the extent of phosphorylated tau (p-tau). Unexpectedly, a longevity-dependent decrease in tau prions was found in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the tau prion levels decreased exponentially with respect to the age at death with a half-time of approximately one decade, and this correlated with the abundance of phosphorylated tau.

Even though our findings with tau prions were not unexpected, they were counterintuitive; thus, tau phosphorylation and tau prion activity decreased exponentially with longevity in patients with AD ranging from ages 37 to 99 years. Our findings demonstrated an inverse correlation between longevity in AD patients and the abundance of neurotoxic tau prions. Moreover, our discovery may have profound implications for the selection of phenotypically distinct patient populations and the development of diagnostics and effective therapeutics for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Zentralbl Gesamte Neurol Psychiatr 4:356–385

    Article  Google Scholar 

  2. Goedert M (2009) Oskar Fischer and the study of dementia. Brain 132:1102–1111

    Article  PubMed  Google Scholar 

  3. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  4. Brion JP, Couck AM, Passareiro E, Flament-Durand J (1985) Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17:89–96

    CAS  PubMed  Google Scholar 

  5. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83:4044–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollock NJ, Mirra SS, Binder LI, Hansen LA, Wood JG (1986) Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet 2:1211

    Article  CAS  PubMed  Google Scholar 

  8. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF et al (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  CAS  PubMed  Google Scholar 

  9. Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336:1511–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rasmussen J, Jucker M, Walker LC (2017) Aβ seeds and prions: how close the fit? Prion 11:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condello C, Stöhr J (2018) Aβ propagation and strains: implications for the phenotypic diversity in Alzheimer’s disease. Neurobiol Dis 109:191–200

    Article  PubMed  Google Scholar 

  12. Ayers JI, Giasson BI, Borchelt DR (2018) Prion-like spreading in tauopathies. Biol Psychiatry 83:337–346

    Article  CAS  PubMed  Google Scholar 

  13. Aoyagi A, Condello C, Stöhr J, Yue W, Lee JC, Rivera BM et al (2019) Aβ and tau prion-like activities decline with longevity in the Alzheimer’s disease human brain. Sci Transl Med 11(eaat8462):1–13

    Google Scholar 

  14. Masters CL, Gajdusek DC, Gibbs CJ Jr (1981) Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome. Brain 104:559–588

    Article  CAS  PubMed  Google Scholar 

  15. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD et al (1989) Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338:342–345

    Article  CAS  PubMed  Google Scholar 

  16. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  17. Goate A, Hardy J (2012) Twenty years of Alzheimer’s disease-causing mutations. J Neurochem 120(Suppl. 1):3–8

    Article  CAS  PubMed  Google Scholar 

  18. TCW J, Goate AM (2017) Genetics of β-amyloid precursor protein in Alzheimer’s disease. In: Prusiner SB (ed) Prion diseases. Cold spring harb. perspect. med. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 203–213

    Google Scholar 

  19. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  20. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  CAS  PubMed  Google Scholar 

  21. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43(6):815–825

    Article  CAS  PubMed  Google Scholar 

  22. Maat-Schieman MLC, Yamaguchi H, Hegeman-Kleinn IM, Welling-Graafland C, Natté R, Roos RAC et al (2004) Glial reactions and the clearance of amyloid β protein in the brains of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Acta Neuropathol 107:389–398

    Article  CAS  PubMed  Google Scholar 

  23. Van Duinen SG, Castano EM, Prelli F, Bots GTAB, Luyendij KW, Frangione B (1987) Hereditary cerebral haemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer’s disease. Proc Natl Acad Sci U S A 84:5991–5994

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karran E, De Strooper B (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139(Suppl. 2):237–252

    Article  CAS  PubMed  Google Scholar 

  25. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293:1491–1495

    Google Scholar 

  27. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  28. Bennett RE, DeVos SL, Dujardin S, Corjuc B, Gor R, Gonzalez J et al (2017) Enhanced tau aggregation in the presence of amyloid β. Am J Pathol 187:1601–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38

    Article  CAS  PubMed  Google Scholar 

  30. Lesne SE (2014) Toxic oligomer species of amyloid-β in Alzheimer’s disease, a timing issue. Swiss Med Wkly 144:w14021. https://doi.org/10.4414/smw.2014.14021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18:800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  33. Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA et al (2015) Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138:1370–1381

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woerman AL, Stöhr J, Aoyagi A, Rampersaud R, Krejciova Z, Watts JC et al (2015) Propagation of prions causing synucleinopathies in cultured cells. Proc Natl Acad Sci U S A 112:E4949–E4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I, Grinberg LT et al (2016) Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci U S A 113:E8187–E8196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer’s Aβ42 peptide: an unbiased search for the sequence determinants of Aβ amyloidogenesis. J Mol Biol 319:1279–1290

    Article  CAS  PubMed  Google Scholar 

  40. Kim W, Kim Y, Min J, Kim DJ, Chang YT, Hecht MH (2006) A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. ACS Chem Biol 1:461–469

    Article  CAS  PubMed  Google Scholar 

  41. Ochiishi T, Doi M, Yamasaki K, Hirose K, Kitamura A, Urabe T et al (2016) Development of new fusion proteins for visualizing amyloid-β oligomers in vivo. Sci Rep 6:22712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M et al (2015) Peptide dimer structure in an Aβ(1–42) fibril visualized with cryo-EM. Proc Natl Acad Sci U S A 112:11858–11863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

    Article  CAS  PubMed  Google Scholar 

  44. Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG et al (2017) Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 358:116–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ et al (2012) Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci U S A 109:11025–11030

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stöhr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M et al (2014) Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 111:10329–10334

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C et al (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat Neurosci 4:887–893

    Article  CAS  PubMed  Google Scholar 

  48. Elkins MR, Wang T, Nick M, Jo H, Lemmin T, Prusiner SB et al (2016) Structural polymorphism of Alzheimer’s β-amyloid fibrils as controlled by an E22 switch: a solid-state NMR study. J Am Chem Soc 138:9840–9852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cloe AL, Orgel JPRO, Sachleben JR, Tycko R, Meredith SC (2011) The Japanese mutant Aβ (ΔE22-Aβ(1-39)) forms fibrils instantaneously, with low-thioflavin T fluorescence: seeding of wild-type Aβ(1-40) into atypical fibrils by ΔE22-Aβ(1-39). Biochemistry 50:2026–2039

    Article  CAS  PubMed  Google Scholar 

  50. Levine DJ, Stöhr J, Falese LE, Ollesch J, Wille H, Prusiner SB et al (2015) Mechanism of scrapie prion precipitation with phosphotungstate anions. ACS Chem Biol 10:1269–1277

    Article  CAS  PubMed  Google Scholar 

  51. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  54. Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC et al (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A 111:E4376–E4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Furman JL, Vaquer-Alicea J, White CL III, Cairns NJ, Nelson PT, Diamond MI (2017) Widespread tau seeding activity at early Braak stages. Acta Neuropathol 133:91–100

    Article  CAS  PubMed  Google Scholar 

  56. Toledo JB, Gopal P, Raible K, Irwin DJ, Brettschneider J, Sedor S et al (2016) Pathological α-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol 131:393–409

    Article  CAS  PubMed  Google Scholar 

  57. Jellinger KA (2003) α-Synuclein pathology in Parkinson’s and Alzheimer’s disease brain: incidence and topographic distribution—a pilot study. Acta Neuropathol 106:191–201

    Article  PubMed  Google Scholar 

  58. Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Aβ deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci U S A 108:2528–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Olsson TT, Klementieva O, Gouras GK (2018) Prion-like seeding and nucleation of intracellular amyloid-β. Neurobiol Dis 113:1–10

    Article  CAS  PubMed  Google Scholar 

  60. Toyama BH, Kelly MJ, Gross JD, Weissman JS (2007) The structural basis of yeast prion strain variants. Nature 449:233–237

    Article  CAS  PubMed  Google Scholar 

  61. Legname G, Nguyen H-OB, Baskakov IV, Cohen FE, DeArmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci U S A 102:2168–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Legname G, Nguyen H-OB, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103:19105–19110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watts JC, Condello C, Stöhr J, Oehler A, Lee J, DeArmond SJ et al (2014) Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc Natl Acad Sci U S A 111:10323–10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiang W, Yau WM, Lu JX, Collinge J, Tycko R (2017) Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasmussen J, Mahler J, Beschorner N, Kaeser SA, Häsler LM, Baumann F et al (2017) Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc Natl Acad Sci U S A 114:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Condello C, Lemmin T, Stöhr J, Nick M, Wu Y, Watts JC et al (2018) Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc Natl Acad Sci U S A 115:E782–E791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cras P, van Harskamp F, Hendriks L, Ceuterick C, van Duijn CM, Stefanko SZ et al (1998) Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala-->Gly mutation. Acta Neuropathol 96:253–260

    Article  CAS  PubMed  Google Scholar 

  68. Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lübke U et al (2002) Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am J Pathol 161:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao N, Liu C-C, Qiao W, Bu G (2018) Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry 83:347–357

    Article  CAS  PubMed  Google Scholar 

  70. Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35

    Article  CAS  PubMed  Google Scholar 

  72. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  73. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 113:1243–1251

    Article  CAS  PubMed  Google Scholar 

  76. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  CAS  PubMed  Google Scholar 

  77. Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M et al (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta-containing brain extract and by amyloid-beta deposition in APP × Tau transgenic mice. Am J Pathol 171:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A et al (2016) Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 131:549–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Griner SL, Seidler P, Bowler J, Murray KA, Yang TP, Sahay S et al (2019) Structure-based inhibitors of amyloid beta core suggest a common interface with tau. eLife 8:1–28

    Article  Google Scholar 

  80. Shin WS, Di J, Cao Q, Li B, Seidler PM, Murray KA et al (2019) Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther 11(86):1–13

    Google Scholar 

  81. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  82. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  83. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM-Y (2015) Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathol 130:349–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermuller U, Jucker M et al (2015) Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol 25:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    Article  CAS  PubMed  Google Scholar 

  88. Braak H, Del Tredici K (2017) Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. In: Prusiner SB (ed) Prion biology. Cold spring harb. perspect. biol. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 377–399

    Google Scholar 

  89. Hashimoto T, Adams KW, Fan Z, McLean PJ, Hyman BT (2011) Characterization of oligomer formation of amyloid-β peptide using a split-luciferase complementation assay. J Biol Chem 286:27081–27091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    Article  CAS  PubMed  Google Scholar 

  91. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  CAS  PubMed  Google Scholar 

  92. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang T, Li S, Xu H, Walsh DM, Selkoe DJ (2017) Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37:152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ et al (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  CAS  PubMed  Google Scholar 

  95. Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA et al (2018) Discrete pools of oligomeric amyloid-β track with spatial learning deficits in a mouse model of Alzheimer amyloidosis. Am J Pathol 188:739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zahs KR, Ashe KH (2013) β-Amyloid oligomers in aging and Alzheimer’s disease. Front Aging Neurosci 5:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM et al (2013) Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 73:104–119

    Article  CAS  PubMed  Google Scholar 

  98. Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X et al (2018) Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 7:e36584

    Article  PubMed  PubMed Central  Google Scholar 

  99. Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L et al (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065

    Article  CAS  PubMed  Google Scholar 

  100. Jackson SJ, Kerridge C, Cooper J, Cavallini A, Falcon B, Cella CV et al (2016) Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. J Neurosci 36:762–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Johnson NR, Condello C, Guan S, Oehler A, Becker J, Gavidia M et al (2017) Evidence for sortilin modulating regional accumulation of human tau prions in transgenic mice. Proc Natl Acad Sci U S A 114:E11029–E11036

    Google Scholar 

  102. Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J et al (2017) Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol 74:427–436

    Article  PubMed  PubMed Central  Google Scholar 

  103. Condello C, Yuan P, Grutzendler J (2018) Microglia-mediated neuroprotection, TREM2, and Alzheimer’s disease: evidence from optical imaging. Biol Psychiatry 83:377–387

    Article  CAS  PubMed  Google Scholar 

  104. Bongianni M, Orrù C, Groveman BR, Sacchetto L, Fiorini M, Tonoli G et al (2017) Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 74:155–162

    Article  PubMed  Google Scholar 

  105. Concha-Marambio L, Pritzkow S, Moda F, Tagliavini F, Ironside JW, Schulz PE et al (2016) Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 8:370ra183

    Article  PubMed  PubMed Central  Google Scholar 

  106. Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T et al (2011) Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 377:487–493

    Article  CAS  PubMed  Google Scholar 

  107. Pontecorvo MJ, Devous MD Sr, Navitsky M, Lu M, Salloway S, Schaerf FW et al (2017) Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140:748–763

    PubMed  PubMed Central  Google Scholar 

  108. Tosun D, Landau S, Aisen PS, Petersen RC, Mintun M, Jagust W et al (2017) Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals. Brain 140:1499–1512

    Article  PubMed  Google Scholar 

  109. Iaccarino L, Tammewar G, Ayakta N, Baker SL, Bejanin A, Boxer AL et al (2017) Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s disease. Neuroimage Clin 17:452–464

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kidd M (1963) Paired helical filaments in electron microscopy in Alzheimer’s disease. Nature 197:192–193

    Article  CAS  PubMed  Google Scholar 

  111. Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He S, Scheres SHW (2017) Helical reconstruction in RELION. J Struct Biol 198:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bartz JC (2017) Prion strain diversity. In: Prusiner SB (ed) Prion diseases. Cold spring harb. Perspect. Med. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 31–44

    Google Scholar 

  114. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ et al (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol 136:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B et al (2020) Novel tau filament fold in corticobasal degeneration. Nature 580:283–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R et al (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561:137–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B et al (2020) Structures of ɑ-synuclein filaments from multiple system atrophy. Nature 585:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A et al (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10:4760

    Article  PubMed  PubMed Central  Google Scholar 

  121. Prusiner SB (1994) Biology and genetics of prion diseases. Annu Rev Microbiol 48:655–686

    Article  CAS  PubMed  Google Scholar 

  122. Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and rush memory and aging project. J Alzheimers Dis 64:S161–S189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (NIH) (AG002132 and AG031220) and by support from the Dana Foundation, the Rainwater Charitable Foundation, and the Sherman Fairchild Foundation. Human brain tissue was received from the UCSF Neurodegenerative Disease Brain Bank, which is supported by the NIH (AG023501 and AG19724 to W.W.S.), the Tau Consortium, and the Consortium for Frontotemporal Dementia Research. Human brain tissue provided by the Brain Bank at Karolinska Institutet (KI), Stockholm, Sweden, received financial support from StratNeuro at KI, Swedish Brain Power, and Stockholm County Council. Human brain tissue provided by the Massachusetts Alzheimer’s Disease Research Center (Director: Matthew P. Frosch) received financial support from the NIH (P50 AG005134). Autopsy tissue obtained from the University of Washington Neuropathology Core is supported by the Alzheimer’s Disease Research Center (AG05136), the Adult Changes in Thought Study (AG006781), and the Morris K. Udall Center of Excellence for Parkinson’s Disease Research (NS062684). Autopsy tissue was also supplied by the King’s College London (Department of Clinical Neuroscience), the University of Edinburgh (Department of Neuropathology), and the Manchester Brain Bank (University of Manchester), which is part of the Brains for Dementia Research Initiative, jointly funded by Alzheimer’s Society and Alzheimer’s Research UK. We thank the Queen Square Brain Bank for Neurological Disorders (supported by the Reta Lila Weston Trust for Medical Research, the Progressive Supranuclear Palsy [Europe] Association, and the Medical Research Council) at the UCL Institute of Neurology, University College London, for provision of the UK human brain tissue samples. The Sydney Brain Bank is supported by Neuroscience Research Australia and the University of New South Wales. Glenda M. Halliday is a National Health and Medical Research Council of Australia Senior Principal Research Fellow (1079679). Human brain tissue provided by the Rush Alzheimer’s Disease Center, Rush University Medical Center (Director: David A. Bennett) [122], received financial support from the NIH (P30AG10161 and R01AG15819).

Competing Interests

S.B.P. is the founder of Prio-Pharma, which has not contributed financial or any other support to these studies. W.F.D. is a member of the scientific advisory boards of Alzheon Inc., Pliant, Longevity, CyteGen, Amai, and ADRx Inc., none of which have contributed financial or any other support to these studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Condello or Stanley B. Prusiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Condello, C., Merz, G.E., Aoyagi, A., DeGrado, W.F., Prusiner, S.B. (2023). Aβ and Tau Prions Causing Alzheimer’s Disease. In: Chun, J. (eds) Alzheimer’s Disease. Methods in Molecular Biology, vol 2561. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2655-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2655-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2654-2

  • Online ISBN: 978-1-0716-2655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics