Skip to main content

Leveraging Microelectrode Array Technology for Phenotyping Stem Cell-Derived Neurodevelopmental Disease Models

  • Protocol
  • First Online:
Translational Research Methods in Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 185))

  • 463 Accesses

Abstract

Neuronal network activity is commonly affected in neurodevelopmental diseases. Human-induced pluripotent stem cell (hiPSC)-derived neuronal models are powerful for brain disease modeling and drug screening in vitro. Microelectrode arrays (MEAs) provide a noninvasive platform to record spontaneous neuronal activity. Here, we provide guidelines on MEA application and an overview on how MEAs are currently used in research for modelling neurodevelopmental diseases using hiPSC-derived neuronal models. We highlight the advantages of using MEAs for better understanding of physiological and pathological aspects of brain activity as well as limitations and future direction of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris-Rosendahl DJ, Crocq MA (2020) Neurodevelopmental disorders—the history and future of a diagnostic concept. Dialogues Clin Neurosci 22:65. https://doi.org/10.31887/DCNS.2020.22.1/MACROCQ

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kochinke K, Zweier C, Nijhof B et al (2016) Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 98:149. https://doi.org/10.1016/J.AJHG.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pan Y, Monje M (2020) Activity shapes neural circuit form and function: a historical perspective. J Neurosci 40:944–954. https://doi.org/10.1523/JNEUROSCI.0740-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4:a009886. https://doi.org/10.1101/CSHPERSPECT.A009886

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/J.CELL.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130. https://doi.org/10.1038/nrd.2016.245

    Article  CAS  PubMed  Google Scholar 

  7. Michael Deans PJ, Brennand KJ (2021) Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Curr Opin Neurobiol 69:193–201. https://doi.org/10.1016/j.conb.2021.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Passaro AP, Stice SL (2021) Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci 14:1405. https://doi.org/10.3389/FNINS.2020.622137/BIBTEX

    Article  Google Scholar 

  9. Frega M, Van Gestel SHC, Linda K et al (2017) Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. J Vis Exp 2017:54900. https://doi.org/10.3791/54900

    Article  CAS  Google Scholar 

  10. Sasaki T, Suzuki I, Yokoi R et al (2019) Synchronous spike patterns in differently mixed cultures of human iPSC-derived glutamatergic and GABAergic neurons. Biochem Biophys Res Commun 513:300–305. https://doi.org/10.1016/j.bbrc.2019.03.161

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Pak CH, Han Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785. https://doi.org/10.1016/J.NEURON.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang N, Chanda S, Marro S et al (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14:621. https://doi.org/10.1038/NMETH.4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 910(9):2329–2340. https://doi.org/10.1038/nprot.2014.158

    Article  CAS  Google Scholar 

  14. Cederquist GY, Asciolla JJ, Tchieu J et al (2019) Specification of positional identity in forebrain organoids. Nat Biotechnol 374(37):436–444. https://doi.org/10.1038/s41587-019-0085-3

    Article  CAS  Google Scholar 

  15. Mossink B, Verboven AHA, van Hugte EJH et al (2021) Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro. Stem Cell Rep 16:2182–2196. https://doi.org/10.1016/J.STEMCR.2021.07.001

    Article  CAS  Google Scholar 

  16. Frega M, Van Gestel SHC, Linda K et al (2017) Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. J Vis Exp 2017. https://doi.org/10.3791/54900

  17. Linda K, Lewerissa EI, Verboven AH et al (2021) Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy. https://doi.org/10.1080/15548627.2021.1936777

  18. Fong MF, Newman JP, Potter SM, Wenner P (2015) Upward synaptic scaling is dependent on neurotransmission rather than spiking. Nat Commun 6:6339. https://doi.org/10.1038/NCOMMS7339

    Article  CAS  PubMed  Google Scholar 

  19. Steidl EM, Neveu E, Bertrand D, Buisson B (2006) The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res 1096:70–84. https://doi.org/10.1016/j.brainres.2006.04.034

    Article  CAS  PubMed  Google Scholar 

  20. Kasteel EEJ, Westerink RHS (2017) Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicol Lett 270:12–16. https://doi.org/10.1016/J.TOXLET.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  21. Frega M, Linda K, Keller JM et al (2019) Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun 10:1–15. https://doi.org/10.1038/s41467-019-12947-3

    Article  CAS  Google Scholar 

  22. Chiappalone M, Vato A, Tedesco M et al (2003) Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Biosens Bioelectron 18:627–634. https://doi.org/10.1016/S0956-5663(03)00041-1

    Article  CAS  PubMed  Google Scholar 

  23. Corner MA, Van Pelt J, Wolters PS et al (2002) Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks—an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 26:127–185. https://doi.org/10.1016/S0149-7634(01)00062-8

    Article  CAS  PubMed  Google Scholar 

  24. Suresh J, Radojicic M, Pesce LL et al (2016) Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents. J Neurophysiol 115:3073–3089. https://doi.org/10.1152/JN.00995.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein Gunnewiek TM, Van Hugte EJH, Frega M et al (2020) m.3243A > G-induced mitochondrial dysfunction impairs human neuronal development and reduces neuronal network activity and synchronicity. Cell Rep 31:107538. https://doi.org/10.1016/j.celrep.2020.107538

    Article  CAS  PubMed  Google Scholar 

  26. Lombardi LM, Baker SA, Zoghbi HY (2015) MECP2 disorders: from the clinic to mice and back. J Clin Invest 125:2914–2923. https://doi.org/10.1172/JCI78167

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trujillo CA, Adams JW, Negraes PD et al (2021) Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol Med 13:e12523. https://doi.org/10.15252/EMMM.202012523

    Article  CAS  PubMed  Google Scholar 

  28. Nageshappa S, Carromeu C, Trujillo CA et al (2016) Altered neuronal network and rescue in a human MECP2 duplication model. Mol Psychiatry 21:178. https://doi.org/10.1038/MP.2015.128

    Article  CAS  PubMed  Google Scholar 

  29. Utami KH, Skotte NH, Colaço AR et al (2020) Integrative analysis identifies key molecular signatures underlying neurodevelopmental deficits in fragile X syndrome. Biol Psychiatry 88(6):500–511. https://doi.org/10.1016/j.biopsych.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Suresh J, Radojicic M, Pesce LL et al (2016) Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents. J Neurophysiol 115:3073. https://doi.org/10.1152/JN.00995.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fichou Y, Nectoux J, Bahi-Buisson N et al (2010) An isoform of the severe encephalopathy-related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain. J Hum Genet 561(56):52–57. https://doi.org/10.1038/jhg.2010.143

    Article  CAS  Google Scholar 

  32. Symonds JD, Zuberi SM, Stewart K et al (2019) Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain 142:2303–2318. https://doi.org/10.1093/BRAIN/AWZ195

    Article  PubMed  PubMed Central  Google Scholar 

  33. Negraes PD, Cleber, Trujillo A et al (2021) Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry 2611(26):7047–7068. https://doi.org/10.1038/s41380-021-01104-2

    Article  Google Scholar 

  34. Que Z, Olivero-Acosta MI, Zhang J et al (2021) Hyperexcitability and pharmacological responsiveness of cortical neurons derived from human iPSCs carrying epilepsy-associated sodium channel Nav1.2-L1342P genetic variant. J Neurosci 41:10194–10208. https://doi.org/10.1523/JNEUROSCI.0564-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deneault E, White SH, Rodrigues DC et al (2018) Complete disruption of autism-susceptibility genes by gene editing predominantly reduces functional connectivity of isogenic human neurons. Stem Cell Rep 11:1211–1225. https://doi.org/10.1016/J.STEMCR.2018.10.003

    Article  CAS  Google Scholar 

  36. Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93:281–290. https://doi.org/10.1016/J.NEURON.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  37. Autar K, Guo X, Rumsey JW et al (2021) A functional hiPSC-cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Rep 17:96–109. https://doi.org/10.1016/j.stemcr.2021.11.009

    Article  CAS  Google Scholar 

  38. Deneault E, Faheem M, White SH et al (2019) CNTN5−/+or EHMT2−/+human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. elife 8:e40092. https://doi.org/10.7554/ELIFE.40092

    Article  PubMed  PubMed Central  Google Scholar 

  39. Flaherty E, Zhu S, Barretto N et al (2019) Neuronal impact of patient-specific aberrant NRXN1α splicing. Nat Genet 5112(51):1679–1690. https://doi.org/10.1038/s41588-019-0539-z

    Article  CAS  Google Scholar 

  40. Mossink B, van Rhijn JR, Wang S et al (2021) Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks. Mol Psychiatry 2021:1–18. https://doi.org/10.1038/s41380-021-01117-x

    Article  CAS  Google Scholar 

  41. Simkin D, Marshall KA, Vanoye CG et al (2021) Dyshomeostatic modulation of ca2+−activated k+ channels in a human neuronal model of kcnq2 encephalopathy. elife 10:1–32. https://doi.org/10.7554/ELIFE.64434

    Article  Google Scholar 

  42. Tidball AM, Lopez-Santiago LF, Yuan Y et al (2020) Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain 143:3025. https://doi.org/10.1093/BRAIN/AWAA247

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yokoi R, Kuroda T, Matsuda N et al (2021) Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC-derived cortical neural networks. J Pharmacol Sci 148:267–278. https://doi.org/10.1016/j.jphs.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  44. Cook D, Brown D, Alexander R et al (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431. https://doi.org/10.1038/nrd4309

    Article  CAS  PubMed  Google Scholar 

  45. Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS (2020) Applicability of hipsc-derived neuronal cocultures and rodent primary cortical cultures for in vitro seizure liability assessment. Toxicol Sci 178:71–87. https://doi.org/10.1093/toxsci/kfaa136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Accardi MV, Pugsley MK, Forster R et al (2016) The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 81:47–59. https://doi.org/10.1016/j.vascn.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  47. Bradley JA, Luithardt HH, Metea MR, Strock CJ (2018) In vitro screening for seizure liability using microelectrode array technology. Toxicol Sci 163:240–253. https://doi.org/10.1093/toxsci/kfy029

    Article  CAS  PubMed  Google Scholar 

  48. Grainger AI, King MC, Nagel DA et al (2018) In vitro models for seizure-liability testing using induced pluripotent stem cells. Front Neurosci. https://doi.org/10.3389/fnins.2018.00590

  49. Ishii MN, Yamamoto K, Shoji M et al (2017) Human induced pluripotent stem cell (hiPSC)-derived neurons respond to convulsant drugs when co-cultured with hiPSC-derived astrocytes. Toxicology 389:130–138. https://doi.org/10.1016/j.tox.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  50. Odawara A, Matsuda N, Ishibashi Y et al (2018) Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-28835-7

    Article  CAS  Google Scholar 

  51. Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS (2018) Human iPSC-derived neuronal models for in vitro neurotoxicity assessment. Neurotoxicology 67:215–225. https://doi.org/10.1016/j.neuro.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  52. Pei Y, Peng J, Behl M et al (2016) Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 1638:57–73. https://doi.org/10.1016/j.brainres.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  53. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23:393–410. https://doi.org/10.1016/j.molmed.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  54. Izsak J, Seth H, Iljin M et al (2021) Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function. Transl Psychiatry 11:281. https://doi.org/10.1038/s41398-021-01399-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Hugte E, Nadif Kasri N (2019) Modeling psychiatric diseases with induced pluripotent stem cells. Adv Exp Med Biol 1192:297–312

    Article  Google Scholar 

  56. Watmuff B, Berkovitch SS, Huang JH et al (2016) Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 73:96–103

    Article  CAS  Google Scholar 

  57. Klein Gunnewiek TM, Verboven AHA, Pelgrim I et al (2021) Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A>G heteroplasmy in iPSC-derived neurons. Stem Cell Rep 16:2197–2212. https://doi.org/10.1016/j.stemcr.2021.07.002

    Article  CAS  Google Scholar 

  58. Negri J, Menon V, Young-Pearse TL (2020) Assessment of spontaneous neuronal activity in vitro using multi-well multi-electrode arrays: implications for assay development. eNeuro 7 7(1):ENEURO.0080-19.2019. https://doi.org/10.1523/ENEURO.0080-19.2019

    Article  Google Scholar 

  59. Pfrieger FW (2009) Roles of glial cells in synapse development. Cell Mol Life Sci 66:2037–2047. https://doi.org/10.1007/S00018-009-0005-7/FIGURES/2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Russo FB, Freitas BC, Pignatari GC et al (2018) Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 83:569–578. https://doi.org/10.1016/j.biopsych.2017.09.021

    Article  PubMed  Google Scholar 

  61. Chen C, Jiang P, Xue H et al (2014) Role of astroglia in down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 5. https://doi.org/10.1038/ncomms5430

  62. Kim YS, Choi J, Yoon BE (2020) Neuron-glia interactions in neurodevelopmental disorders. Cell 9:2176. https://doi.org/10.3390/CELLS9102176

    Article  CAS  Google Scholar 

  63. Popova G, Soliman SS, Kim CN et al (2021) Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28:2153–2166.e6. https://doi.org/10.1016/J.STEM.2021.08.015

    Article  CAS  PubMed  Google Scholar 

  64. Shin H, Jeong S, Lee JH et al (2021) 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun 121(12):1–18. https://doi.org/10.1038/s41467-020-20763-3

    Article  CAS  Google Scholar 

  65. Cabrera-Garcia D, Warm D, de la Fuente P et al (2021) Early prediction of developing spontaneous activity in cultured neuronal networks. Sci Rep 111(11):1–13. https://doi.org/10.1038/s41598-021-99538-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nael Nadif Kasri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., van Hugte, E., Ciptasari, U., Nadif Kasri, N. (2022). Leveraging Microelectrode Array Technology for Phenotyping Stem Cell-Derived Neurodevelopmental Disease Models. In: Martin, S., Laumonnier, F. (eds) Translational Research Methods in Neurodevelopmental Disorders. Neuromethods, vol 185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2569-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2569-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2568-2

  • Online ISBN: 978-1-0716-2569-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics