Skip to main content

Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Frontiers in Psychiatry

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1192))

Abstract

Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soldner F, Jaenisch R. Stem cells, genome editing, and the path to translational medicine. Cell. 2018;175(3):615–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engle SJ, Blaha L, Kleiman RJ. Best practices for translational disease modeling using human iPSC-derived neurons. Neuron. 2018;100(4):783–97.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  6. Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet. 2015;386(10009):2145–91.

    Article  Google Scholar 

  7. Soliman M, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22(9):1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.

    Article  PubMed  Google Scholar 

  9. Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187.

    Article  CAS  PubMed  Google Scholar 

  10. McClellan J, King M-C. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421.

    Article  CAS  PubMed Central  Google Scholar 

  12. Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSC-derived neurons. Cell. 2011;145(6):831–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geschwind DH. Autism: many genes, common pathways? Cell. 2008;135(3):391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen Z, Christian KM, Song H, Ming G-l. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol. 2016;36:118–27.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet. 2011;12(9):628.

    Article  CAS  PubMed  Google Scholar 

  16. Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30(11):1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000;9(9):1415–23.

    Article  CAS  PubMed  Google Scholar 

  18. Sachs N, Sawa A, Holmes S, Ross C, DeLisi L, Margolis R. A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry. 2005;10(8):758.

    Article  CAS  PubMed  Google Scholar 

  19. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515(7527):414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185.

    Article  CAS  PubMed  Google Scholar 

  21. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. 2015;20(11):1350.

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3(9):728.

    Article  CAS  PubMed  Google Scholar 

  24. Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci. 2016;113(3):751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He Q, Nomura T, Xu J, Contractor A. The developmental switch in GABA polarity is delayed in fragile X mice. J Neurosci. 2014;34(2):446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci. 2011;31(30):11088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Arch Gen Psychiatry. 2011;68(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  28. Sun C, Zhang L, Chen G. An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. Mol Brain. 2013;6(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012;148(5):1051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linda K, Fiuza C, Kasri NN. The promise of induced pluripotent stem cells for neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:382–91.

    Article  CAS  PubMed  Google Scholar 

  31. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20(6):703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffman GE, Schrode N, Flaherty E, Brennand KJ. New considerations for hiPSC-based models of neuropsychiatric disorders. Mol Psychiatry. 2018:1.

    Google Scholar 

  34. Doherty JL, Owen MJ. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med. 2014;6(4):29.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoekstra SD, Stringer S, Heine VM, Posthuma D. Genetically-informed patient selection for iPSC studies of complex diseases may aid in reducing cellular heterogeneity. Front Cell Neurosci. 2017;11:164.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Byrne SM, Mali P, Church GM. Genome editing in human stem cells. Methods Enzym. 2014;546. p. 119–38.

    Google Scholar 

  39. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013:1231143.

    Google Scholar 

  40. Redies C, Hertel N, Hübner CA. Cadherins and neuropsychiatric disorders. Brain Res. 2012;1470:130–44.

    Article  CAS  PubMed  Google Scholar 

  41. Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. Generation of isogenic controls for in vitro disease modelling of X-chromosomal disorders. Stem Cell Rev Rep. 2018:1–10.

    Google Scholar 

  42. Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol Psychiatry. 2018.

    Google Scholar 

  43. Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, et al. Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia. 2012;55(6):1689–98.

    Article  CAS  PubMed  Google Scholar 

  44. Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, et al. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells. 2011;29(9):1338–48.

    CAS  PubMed  Google Scholar 

  45. Hämäläinen RH, Manninen T, Koivumäki H, Kislin M, Otonkoski T, Suomalainen A. Tissue-and cell-type-specific manifestations of heteroplasmic mtDNA 3243A > G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci. 2013;110(38):E3622–30.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Watmuff B, Berkovitch SS, Huang JH, Iaconelli J, Toffel S, Karmacharya R. Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2016;73:96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steen RG, Mull C, Mcclure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 2006;188(6):510–8.

    Article  PubMed  Google Scholar 

  49. Arnone D, Cavanagh J, Gerber D, Lawrie S, Ebmeier K, McIntosh A. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry. 2009;195(3):194–201.

    Article  PubMed  Google Scholar 

  50. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11(5):514.

    Article  CAS  PubMed  Google Scholar 

  51. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  52. Song J, Hou X, Hu X, Lu C, Liu C, Wang J, et al. Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats. Chem Biol Interact. 2015;242:211–7.

    Article  CAS  PubMed  Google Scholar 

  53. Javitt D. Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry. 1987;9(1):12–35.

    CAS  PubMed  Google Scholar 

  54. Engel J. Excitation and inhibition in epilepsy. Can J Neurol Sci. 1996;23(3):167–74.

    Article  PubMed  Google Scholar 

  55. Selten M, van Bokhoven H, Kasri NN. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research. 2018;7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiat. 2002;52(8):805–10.

    Article  CAS  PubMed  Google Scholar 

  57. Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA. Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology. 2016;41(9):2206.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, et al. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci. 2010;45(3):258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014;2(3):295–310.

    Article  CAS  Google Scholar 

  60. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836.

    Article  CAS  PubMed  Google Scholar 

  61. Lu J, Zhong X, Liu H, Hao L, Huang CT-L, Sherafat MA, et al. Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol. 2016;34(1):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Soldner F, Jaenisch R. iPSC disease modeling. Science. 2012;338(6111):1155–6.

    Article  PubMed  Google Scholar 

  63. Yang N, Chanda S, Marro S, Ng Y-H, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14(6):621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schafer ST, Paquola AC, Stern S, Gosselin D, Ku M, Pena M, et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci. 2019:1.

    Google Scholar 

  66. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci. 2011;108(25):10343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng P-Y, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84(2):311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018.

    Article  CAS  PubMed  Google Scholar 

  71. Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. NeuroImmunomodulation. 2014;21(2–3):117–22.

    Article  CAS  PubMed  Google Scholar 

  72. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108(32):13281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17(4):319–34.

    Article  PubMed  Google Scholar 

  75. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019:1.

    Google Scholar 

  76. Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59(2):137–50.

    Article  CAS  PubMed  Google Scholar 

  77. Van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C] PK11195 positron emission tomography study. Biol Psychiat. 2008;64(9):820–2.

    Article  PubMed  Google Scholar 

  78. Ohgidani M, Kato TA, Kanba S. Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci. 2015;9:184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 2013;77(3):440–56.

    Article  CAS  PubMed  Google Scholar 

  80. Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, et al. Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell. 2017;21(2):195–208. e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci. 2013;110(50):20284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016;22(11):1220.

    Article  CAS  PubMed  Google Scholar 

  83. Paşca SP. Assembling human brain organoids. Science. 2019;363(6423):126–7.

    Article  PubMed  CAS  Google Scholar 

  84. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545(7652):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ormel PR, de Sá RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MA, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9(1):4167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. 2018;21(7):941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rubenstein J, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain Behav. 2003;2(5):255–67.

    Article  CAS  Google Scholar 

  88. Mertens J, Wang Q-W, Kim Y, Diana XY, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527(7576):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vadodaria KC, Ji Y, Skime M, Paquola A, Nelson T, Hall-Flavin D, et al. Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons. Mol Psychiatry. 2019:1.

    Google Scholar 

  90. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell. 2011;9(6):517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vadodaria KC, Amatya DN, Marchetto MC, Gage FH. Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward. Genome Med. 2018;10(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell. 2015;16(6):591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nael Nadif Kasri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Hugte, E., Nadif Kasri, N. (2019). Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells. In: Kim, YK. (eds) Frontiers in Psychiatry. Advances in Experimental Medicine and Biology, vol 1192. Springer, Singapore. https://doi.org/10.1007/978-981-32-9721-0_15

Download citation

Publish with us

Policies and ethics