Skip to main content

Single Nucleotide Polymorphisms in Papillary Thyroid Carcinoma: Clinical Significance and Detection by High-Resolution Melting

  • Protocol
  • First Online:
Papillary Thyroid Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2534))

Abstract

Single nucleotide polymorphisms (SNPs) can have a variety of implications for the progression and development of papillary thyroid carcinomas (PTCs). Identification of SNPs, either as germline variants or mutations occurring in tumor tissue, can thus have useful implications for patient management. There are many potential methods that can be used to identify a specific SNP or other genetic variant, and among these is high-resolution melting (HRM). HRM can be used to detect the presence of a genetic variant in a single sealed tube, involving undertaking a polymerase chain reaction (PCR) in the presence of a saturating intercalating dye. Once PCR is complete, the amplicons produced can be melted through incremental raising of the temperature and the genotype of individual samples determined by changes in the change in fluorescence as the fluorescent dye is released by the melting DNA. In this chapter, we detail a method for the genotyping of DNA samples using HRM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020) Global cancer observatory: cancer today. International Agency for Research on Cancer, Lyon. Available from: https://gco.iarc.fr/today. Accessed 30 Apr 2021.

    Google Scholar 

  2. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH (2019) Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 16(3):450–460. https://doi.org/10.7150/ijms.29935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Roman BR, Morris LG, Davies L (2017) The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes 24(5):332–336. https://doi.org/10.1097/MED.0000000000000359

    Article  PubMed Central  PubMed  Google Scholar 

  4. Prete A, Borges de Souza P, Censi S, Muzza NN, Sponziello M (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:102. https://doi.org/10.3389/fendo.2020.00102

    Article  Google Scholar 

  5. Basolo F, Giannini R, Faviana P, Fontanini G, Patricelli Malizia A, Ugolini C, Elisei R, Miccoli P, Toniolo A (2004) Thyroid papillary carcinoma: preliminary evidence for a germ-line single nucleotide polymorphism in the Fas gene. J Endocrinol 182(3):479–484. https://doi.org/10.1677/joe.0.1820479

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadpour-Gharehbagh A, Heidari Z, Eskandari M, Aryan A, Salimi S (2020) Association between genetic polymorphisms in microrna machinery genes and risk of papillary thyroid carcinoma. Pathol Oncol Res 26(2):1235–1241. https://doi.org/10.1007/s12253-019-00688-z

    Article  CAS  PubMed  Google Scholar 

  7. Choi JH, Lee J, Yang S, Lee EK, Hwangbo Y, Kim J (2018) Genetic variations in TAS2R3 and TAS2R4 bitterness receptors modify papillary carcinoma risk and thyroid function in Korean females. Sci Rep 8(1):15004. https://doi.org/10.1038/s41598-018-33338-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Song CM, Kwon TK, Park BL, Ji YB, Tae K (2015) Single nucleotide polymorphisms of ataxia telangiectasia mutated and the risk of papillary thyroid carcinoma. Environ Mol Mutagen 56(1):70–76. https://doi.org/10.1002/em.21898

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Gu Y, Li Y, Cui H, Liu X, Sun H, Yu Q, Yu Y, Liu Y, Zhan S, Cheng Y (2020) Association of rs944289, rs965513, and rs1443434 in TITF1/TITF2 with risks of papillary thyroid carcinoma and with nodular goiter in Northern Chinese Han populations. Int J Endocrinol 2020:4539747. https://doi.org/10.1155/2020/4539747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Maruei-Milan R, Heidari Z, Salimi S (2019) Role of MDM2 309T>G (rs2279744) and I/D (rs3730485) polymorphisms and haplotypes in risk of papillary thyroid carcinoma, tumor stage, tumor size, and early onset of tumor: a case control study. J Cell Physiol 234(8):12934–12940. https://doi.org/10.1002/jcp.27960

    Article  CAS  PubMed  Google Scholar 

  11. Xu L, Doan PC, Wei Q, Liu Y, Li G, Sturgis EM (2012) Association of BRCA1 functional single nucleotide polymorphisms with risk of differentiated thyroid carcinoma. Thyroid 22(1):35–43. https://doi.org/10.1089/thy.2011.0117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Salajegheh A, Smith RA, Kasem K, Gopalan V, Nassiri MR, William R, Lam AK (2011) Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: potential markers for aggressive phenotypes. Eur J Surg Oncol 37(1):93–99. https://doi.org/10.1016/j.ejso.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  13. Roncevic J, Djoric I, Selemetjev S, Jankovic J, Dencic TI, Bozic V, Cvejic D (2019) MMP-9-1562 C/T single nucleotide polymorphism associates with increased MMP-9 level and activity during papillary thyroid carcinoma progression. Pathology 51(1):55–61. https://doi.org/10.1016/j.pathol.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  14. Jendrzejewski J, Liyanarachchi S, Nagy R, Senter L, Wakely PE, Thomas A, Nabhan F, He H, Li W, Sworczak K, Ringel MD, Kirschner LS, de la Chapelle A (2016) Papillary thyroid carcinoma: association between germline DNA variant markers and clinical parameters. Thyroid 26(9):1276–1284. https://doi.org/10.1089/thy.2015.0665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Er TK, Chang JG (2012) High-resolution melting: applications in genetic disorders. Clin Chim Acta 414:197–201. https://doi.org/10.1016/j.cca.2012.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, R.A., Lam, A.K. (2022). Single Nucleotide Polymorphisms in Papillary Thyroid Carcinoma: Clinical Significance and Detection by High-Resolution Melting. In: Lam, A.K. (eds) Papillary Thyroid Carcinoma. Methods in Molecular Biology, vol 2534. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2505-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2505-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2504-0

  • Online ISBN: 978-1-0716-2505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics