Skip to main content

Advertisement

Log in

Association between Genetic Polymorphisms in microRNA Machinery Genes and Risk of Papillary Thyroid Carcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Evidence suggests that the microRNAs are involved in tumorigenesis and progression of various types of malignant tumors. Therefore, the aim of current research was to examine association between genetic variants in the miRNA machinery genes and risk of papillary thyroid carcinoma(PTC) in Iranian population. Peripheral blood samples were collected from 120 PTC patients and 130 healthy subjects. Genotyping of polymorphisms in miRNA Machinery genes (DICER1 rs3742330, DROSHA rs6877842 and XPO5 rs11077) polymorphisms was performed using PCR-RFLP method. Chi square and independent sample t tests were applied for categorical and continuous variables, respectively. In this study, we found that frequency of DICER1 rs3742330G allele was significantly higher in controls compared to PTC patients. In addition, the DICER1 rs3742330 polymorphism was associated with lower risk of PTC in dominant (AG + GG vs. AA, OR = 0.5, 95%CI = 0.3–0.9, P = 0.03) model. No association was found between DROSHA rs6877842 and XPO5 rs11077 polymorphisms and PTC neither in dominant nor in recessive and allelic models. The frequency of DROSHA rs6877842GC genotype was higher in PTC patients with smaller tumor size (<1). Therefore, this polymorphism could be a protective factor for tumor development in PTC patients (OR = 0.3, 95%CI = 0.1–1, P = 0. 04). The current study indicated that DICER1 rs3742330 polymorphism was associated with lower risk of PTC. Furthermore, DROSHA rs6877842 polymorphism could be a protective factor for tumor development in PTC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ries LAG, Young Jr JL, Keel GE, Eisner MP, Lin YD, Horner M-JD (2007) Cancer survival among adults: US SEER program, 1988–2001. Patient and tumor characteristics SEER Survival Monograph Publication:07–6215

  2. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. Jama 317(13):1338–1348

    Article  Google Scholar 

  3. Ning L, Rao W, Yu Y, Liu X, Pan Y, Ma Y, Liu R, Zhang S, Sun H, Yu Q (2016) Association between the KRAS gene polymorphisms and papillary thyroid carcinoma in a Chinese Han population. J Cancer 7(15):2420–2426

    Article  CAS  Google Scholar 

  4. Lun Y, Wu X, Xia Q, Han Y, Zhang X, Liu Z, Wang F, Duan Z, Xin S, Zhang J (2013) Hashimoto’s thyroiditis as a risk factor of papillary thyroid cancer may improve cancer prognosis. Otolaryngol Head Neck Surg 148(3):396–402

    Article  Google Scholar 

  5. Rago T, Fiore E, Scutari M, Santini F, Di Coscio G, Romani R, Piaggi P, Ugolini C, Basolo F, Miccoli P (2010) Male sex, single nodularity, and young age are associated with the risk of finding a papillary thyroid cancer on fine-needle aspiration cytology in a large series of patients with nodular thyroid disease. Eur J Endocrinol 162(4):763–770

    Article  CAS  Google Scholar 

  6. Zhang Q, Song F, Zheng H, Zhu X, Song F, Yao X, Zhang L, Chen K (2013) Association between single-nucleotide polymorphisms of BRAF and papillary thyroid carcinoma in a Chinese population. Thyroid 23(1):38–44

    Article  CAS  Google Scholar 

  7. Ning L, Yu Y, Liu X, Ai L, Zhang X, Rao W, Shi J, Sun H, Yu Q (2015) Association analysis of MET gene polymorphism with papillary thyroid carcinoma in a Chinese population. Int J Endocrinol 2015(2015):1–5. https://doi.org/10.1155/2015/405217

    Article  CAS  Google Scholar 

  8. Wei W-J, Lu Z-W, Li D-S, Wang Y, Zhu Y-X, Wang Z-Y, Wu Y, Wang Y-L, Ji Q-H (2014) Association of the miR-149 Rs2292832 polymorphism with papillary thyroid Cancer risk and clinicopathologic characteristics in a Chinese population. Int J Mol Sci 15(11):20968–20981

    Article  CAS  Google Scholar 

  9. Heidari Z, Mohammadpour-Gharehbagh A, Eskandari M, Harati-Sadegh M, Salimi S (2018) Genetic polymorphisms of miRNA let7a-2 and pri-mir-34b/c are associated with an increased risk of papillary thyroid carcinoma and clinical/pathological features. J Cell Biochem 120:8640–8647. https://doi.org/10.1002/jcb.28152

    Article  CAS  Google Scholar 

  10. Ha T-Y (2011) MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 11(3):135–154

    Article  Google Scholar 

  11. Zhang W, Dahlberg JE, Tam W (2007) MicroRNAs in tumorigenesis: a primer. Am J Pathol 171(3):728–738

    Article  CAS  Google Scholar 

  12. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333

    Article  CAS  Google Scholar 

  13. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610

    Article  CAS  Google Scholar 

  14. Paranjape T, Slack FJ, Weidhaas JB (2009) MicroRNAs: tools for cancer diagnostics. Gut 58(11):1546–1554. https://doi.org/10.1136/gut.2009.179531

    Article  CAS  Google Scholar 

  15. Fuziwara CS, Kimura ET (2017) MicroRNAs in thyroid development, function and tumorigenesis. Mol Cell Endocrinol 456:44–50. https://doi.org/10.1016/j.mce.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  16. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  Google Scholar 

  17. Song X, Zhong H, Wu Q, Wang M, Zhou J, Zhou Y, Lu X, Ying B (2017) Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 8(49):86435–86446. https://doi.org/10.18632/oncotarget.21199

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rah H, Jeon YJ, Lee BE, Kim JO, Shim SH, Lee WS, Choi DH, Kim JH, Kim NK (2013) Association of polymorphisms in microRNA machinery genes (DROSHA, DICER1, RAN, and XPO5) with risk of idiopathic primary ovarian insufficiency in Korean women. Menopause 20(10):1067–1073

    Article  Google Scholar 

  19. Wang F, Jiang C, Sun Q, Yan F, Wang L, Fu Z, Liu T, Hu F (2015) miR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther 8:3021–3028. https://doi.org/10.2147/ott.s90710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li D, Jian W, Wei C, Song H, Gu Y, Luo Y, Fang L (2014) Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. Int J Clin Exp Pathol 7(11):7672–7680

    PubMed  PubMed Central  Google Scholar 

  21. Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, Fan Y (2015) MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem: international journal of experimental cellular physiology, biochemistry, and pharmacology 35(1):71–82. https://doi.org/10.1159/000369676

    Article  CAS  Google Scholar 

  22. Xiong F, Wu C, Chang J, Yu D, Xu B, Yuan P, Zhai K, Xu J, Tan W, Lin D (2011) Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer. Cancer Res 71(15):5175–5181. https://doi.org/10.1158/0008-5472.can-10-4407

    Article  CAS  PubMed  Google Scholar 

  23. Robertson JC, Jorcyk CL, Oxford JT (2018) DICER1 syndrome: DICER1 mutations in rare cancers. Cancers 10(5). https://doi.org/10.3390/cancers10050143

    Article  Google Scholar 

  24. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96(2):111–115

    Article  CAS  Google Scholar 

  25. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng J-F, Nick AM (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650

    Article  CAS  Google Scholar 

  26. Erler P, Keutgen XM, Crowley MJ, Zetoune T, Kundel A, Kleiman D, Beninato T, Scognamiglio T, Elemento O, Zarnegar R (2014) Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery 156(6):1342–1350

    Article  Google Scholar 

  27. Kim MN, Kim JO, Lee SM, Park H, Lee JH, Rim KS, Hwang SG, Kim NK (2016) Variation in the Dicer and RAN genes are associated with survival in patients with hepatocellular carcinoma. PLoS One 11(9):e0162279. https://doi.org/10.1371/journal.pone.0162279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osuch-Wojcikiewicz E, Bruzgielewicz A, Niemczyk K, Sieniawska-Buccella O, Nowak A, Walczak A, Majsterek I (2015) Association of polymorphic variants of miRNA processing genes with larynx cancer risk in a polish population. Biomed Res Int 2015(2015):1–17. https://doi.org/10.1155/2015/298378

    Article  CAS  Google Scholar 

  29. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785. https://doi.org/10.1093/nar/gkh824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J, Paranjape T, Zhu Y (2011) Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2(1):9–18

    CAS  PubMed  Google Scholar 

  31. Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, Wu X (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res 1(6):460–469

    Article  CAS  Google Scholar 

  32. Wen J, Gao Q, Wang N, Zhang W, Cao K, Zhang Q, Chen S, Shi L (2017) Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine 96(14):e6351. https://doi.org/10.1097/md.0000000000006351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  Google Scholar 

  34. Yuan L, Chu H, Wang M, Gu X, Shi D, Ma L, Zhong D, Du M, Li P, Tong N, Fu G, Qin C, Yin C, Zhang Z (2013) Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk. PLoS One 8(11):e81524. https://doi.org/10.1371/journal.pone.0081524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sung H, Jeon S, Lee KM, Han S, Song M, Choi JY, Park SK, Yoo KY, Noh DY, Ahn SH, Kang D (2012) Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 12:195. https://doi.org/10.1186/1471-2407-12-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the research deputy of Zahedan University of Medical Sciences for support of this project no.7960 (IR. ZAUMS. REC.1395.208). We wish to acknowledge the contribution of the study participants (patients and controls) to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Salimi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration.

Informed Consent

Informed consents were obtained from the study participants. The study protocol was confirmed by the Ethics Committee of the Zahedan University of Medical Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour-Gharehbagh, A., Heidari, Z., Eskandari, M. et al. Association between Genetic Polymorphisms in microRNA Machinery Genes and Risk of Papillary Thyroid Carcinoma. Pathol. Oncol. Res. 26, 1235–1241 (2020). https://doi.org/10.1007/s12253-019-00688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00688-z

Keywords

Navigation