Skip to main content

Protocols for In Vivo Doubled Haploid (DH) Technology in Maize Breeding: From Haploid Inducer Development to Haploid Genome Doubling

  • Protocol
  • First Online:
Plant Gametogenesis

Abstract

Doubled haploid (DH) technology reduces the time required to obtain homozygous genotypes and accelerates plant breeding among other advantages. It is established in major crop species such as wheat, barley, maize, and canola. DH lines can be produced by both in vitro and in vivo methods and the latter is focused here. The major steps involved in in vivo DH technology are haploid induction, haploid selection/identification, and haploid genome doubling. Herein, we elaborate on the various steps of DH technology in maize breeding from haploid induction to haploid genome doubling to produce DH lines. Detailed protocols on the following topics are discussed: in vivo haploid inducer line development, haploid selection using seed and root color markers and automated seed sorting based on embryo oil content using QSorter, artificial genome doubling, and the identification of genotypes with spontaneous haploid genome doubling (SHGD) ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuvesson S, Dayteg C, Hagberg P et al (2007) Molecular markers and doubled haploids in European plant breeding programmes. Euphytica 158(3):305–312

    Article  CAS  Google Scholar 

  2. Geiger HH (2009) Doubled haploids. In: Bennetzen JL, Hake SC (eds) Maize handbook: genetics and genomics, vol 2. Springer-Verlag, New York, NY, pp 641–657

    Chapter  Google Scholar 

  3. Kelliher T, Starr D, Su X et al (2019) One-stepgenome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37(3):287–292

    Article  CAS  PubMed  Google Scholar 

  4. Chase SS (1947) Techniques for isolating monoploid maize plants. Am J Bot 34(10):582

    Google Scholar 

  5. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93(873):381–382

    Article  Google Scholar 

  6. Gilles LM, Khaled A, Laffaire JB et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36(1460-2075 (Electronic)):707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a spermspecific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Li X, Meng D et al (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Y, Liu C, Qi X et al (2019) Mutation ofZmDMP enhances haploid induction in maize. Nat Plants 5(6):575–580

    Article  PubMed  Google Scholar 

  10. Trentin HU, Frei UK, Lübberstedt T (2020) Breeding maize maternal haploid inducers. Plants (Basel) 9(5):614

    Article  CAS  Google Scholar 

  11. Boerman NA, Frei UK, Lübberstedt T (2020) Impact of spontaneous haploid genome doubling in maize breeding. Plants (Basel) 9(3):369

    Article  CAS  Google Scholar 

  12. Ren J, Boerman N, Liu R et al (2020) Mapping of QTL and identification of candidate genes conferring spontaneoushaploid genome doubling in maize (Zea mays L.). Plant Sci 293:110337–110337

    Article  CAS  PubMed  Google Scholar 

  13. Trampe B, Dos Santos IG, Frei UK et al (2020) QTL mapping ofspontaneous haploid genome doubling using genotyping-by-sequencing in maize (Zea mays L.). Theor Appl Genet 133(7):2131–2140

    Article  CAS  PubMed  Google Scholar 

  14. Verzegnazzi AL, Dos Santos IG, Krause MD et al (2021) Major locus for spontaneous haploid genome doubling detected by a case-control GWAS in exotic maize germplasm. Theor Appl Genet 134:1423–1434

    Article  CAS  PubMed  Google Scholar 

  15. Chaikam V, Nair SK, Martinez L et al (2018) Marker-assisted breeding of improved maternal haploid inducers in maize for thetropical/subtropical regions. Front Plant Sci 9:1527

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bloom JC, Holland JB (2011) Genomic localization of the maize cross-incompatibility gene, gametophyte factor 1 (ga1). Maydica 56(4):379–387

    Google Scholar 

  17. Wang M, Chen Z, Zhang H et al (2018) Transcriptome analysis providesinsight into the molecular mechanisms underlying gametophyte factor 2-mediated crossincompatibility in maize. Int J Mol Sci 19(6):1757

    Article  PubMed Central  CAS  Google Scholar 

  18. Melchinger AE, Schipprack W, Würschum T et al (2013) Rapid and accurateidentification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3(1):2129–2129

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prigge V, Schipprack W, Mahuku G et al (2012) Development of in vivohaploid inducers for tropical maize breeding programs. Euphytica 185(3):481–490

    Article  Google Scholar 

  20. Chase SS, Nanda DK (1965) Screening for monoploids of maize by use of a purple embryo marker. Maize Genet Coop Newsl 39:59–60

    Google Scholar 

  21. Nanda DK, Chase SS (1966) An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci 6(2):213–215

    Article  Google Scholar 

  22. Greenblatt IM, Bock M (1967) A commercially desirable procedure for detection of monoploids in maize. J Hered 58(1):9–13

    Article  Google Scholar 

  23. Zhao X, Xu X, Xie H et al (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163(2):721731

    Google Scholar 

  24. Coe EH (1994) Anthocyanin genetics. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York, pp 279–281

    Chapter  Google Scholar 

  25. Ford RH (2000) Inheritance of kernel color in corn: explanations & investigations. Am Biol Teach 62(3):181–188

    Article  Google Scholar 

  26. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090

    Article  Google Scholar 

  28. Liu Z, Wang Y, Ren J et al (2016) Maize doubled haploids. In: Janick J (ed) Plant breeding reviews, vol 40. Wiley-Blackwell, Hoboken, NJ, pp 123–160

    Chapter  Google Scholar 

  29. Maqbool MA, Beshir A, Khokhar ES (2020) Doubled haploids in maize: development, deployment, and challenges. Crop Sci 60(6):2815–2840

    Article  CAS  Google Scholar 

  30. Almeida VC, Trentin HU, Frei UK et al (2020) Genomic prediction of maternalhaploid induction rate in maize. Plant Genome 13(1):e20014

    Article  CAS  PubMed  Google Scholar 

  31. Vanous K, Vanous A, Frei UK et al (2017) Generation of maize (Zea mays) doubled haploids via traditional methods. Curr Protoc Plant Biol 2:147–157

    Article  Google Scholar 

  32. Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor Appl Genet 104(4):703–708

    Article  CAS  PubMed  Google Scholar 

  33. Melchinger AE, Molenaar WS, Mirdita V et al (2016) Colchicine alternatives forchromosome doubling in maize haploids for doubled-haploid production. Crop Sci 56(2):559–569

    Article  CAS  Google Scholar 

  34. Chase SS (1969) Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot Rev 35(2):117–167

    Article  Google Scholar 

  35. Zavalishina A, Tyrnov V (1984) Inducing high frequency of matroclinal haploids in maize. Dokl Akad Nauk SSSR 276:735–738

    Google Scholar 

  36. Hu H, Schrag TA, Peis R et al (2016) The genetic basis of haploid induction in maize identified with anovel genome-wide association method. Genetics 202(4):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166(3911):1422–1424

    Article  CAS  PubMed  Google Scholar 

  38. Chalyk ST (1999) Creating new haploid-inducing lines of maize. Maize Genet Coop Newsl 73:53–54

    Google Scholar 

  39. Shatskaya OA (2010) Haploinductors isolation in maize: three cycles of selection on high frequency of induction of matroclinal haploids. Agric Biol 5:79–86

    Google Scholar 

  40. Lashermes P, Beckert M (1988) Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76(3):405–410

    Article  CAS  PubMed  Google Scholar 

  41. Rotarenco V, Dicu G, State D et al (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newsl 84:21–22

    Google Scholar 

  42. Roeber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize—performance ofnew inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50(3):275–283

    Google Scholar 

  43. Iowa State University, Doubled Haploid Facility, 2015. https://www.biotech.iastate.edu/biotechnology-service-facilities/doubled-haploid-facility/

Download references

Acknowledgments

This work was supported by the Foundation for Food & Agriculture Research under award number CA19-SS-0000000128. The content of this book chapter is solely the responsibility of the authors and does not necessarily represent the official views of the Foundation for Food & Agriculture Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddique I. Aboobucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aboobucker, S.I. et al. (2022). Protocols for In Vivo Doubled Haploid (DH) Technology in Maize Breeding: From Haploid Inducer Development to Haploid Genome Doubling. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics