Skip to main content

Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2451))

Abstract

The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, Lorente C, Nunez SC, Ribeiro MS, Thomas AH, Vignoni M, Yoshimura TM (2017) Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol 93:912–919. https://doi.org/10.1111/php.12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tonolli PN, Chiarelli-Neto O, Santacruz-Perez C, Junqueira HC, Watanabe IS, Ravagnani FG, Martins WK, Baptista MS (2017) Lipofuscin generated by UVA turns keratinocytes photosensitive to visible light. J Invest Dermatol 137:2447–2450. https://doi.org/10.1016/j.jid.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  3. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905. https://doi.org/10.1093/jnci/90.12.889

    Article  CAS  PubMed  Google Scholar 

  4. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73. https://doi.org/10.1016/j.mib.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094. https://doi.org/10.1021/nn102722z

    Article  CAS  PubMed  Google Scholar 

  6. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55:115–121. https://doi.org/10.1093/jnci/55.1.115

    Article  CAS  PubMed  Google Scholar 

  7. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364. https://doi.org/10.1042/BJ20150942

    Article  CAS  PubMed  Google Scholar 

  8. Josefsen LB, Boyle RW (2008) Photodynamic therapy: novel third-generation photosensitizers one step closer? Br J Pharmacol 154:1–3. https://doi.org/10.1038/bjp.2008.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kataoka H, Nishie H, Hayashi N, Tanaka M, Nomoto A, Yano S, Joh T (2017) New photodynamic therapy with next-generation photosensitizers. Ann Transl Med 5:183–183. https://doi.org/10.21037/atm.2017.03.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turksoy A, Yildiz D, Akkaya EU (2019) Photosensitization and controlled photosensitization with BODIPY dyes. Coord Chem Rev 379:47–64. https://doi.org/10.1016/j.ccr.2017.09.029

    Article  CAS  Google Scholar 

  11. Chaudhary A, Khurana JM (2018) Synthetic routes for phenazines: an overview. Res Chem Intermed 44:1045–1083. https://doi.org/10.1007/s11164-017-3152-8

    Article  CAS  Google Scholar 

  12. Qiu K, Chen Y, Rees TW, Ji L, Chao H (2019) Organelle-targeting metal complexes: from molecular design to bio-applications. Coord Chem Rev 378:66–86. https://doi.org/10.1016/j.ccr.2017.10.022

    Article  CAS  Google Scholar 

  13. Qidwai A, Annu NB, Kotta S, Narang JK, Baboota S, Ali J (2020) Role of nanocarriers in photodynamic therapy. Photodiagn Photodyn Ther 30:101782. https://doi.org/10.1016/j.pdpdt.2020.101782

    Article  CAS  Google Scholar 

  14. Mokwena MG, Kruger CA, Ivan MT, Heidi A (2018) A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagn Photodyn Ther 22:147–154. https://doi.org/10.1016/j.pdpdt.2018.03.006

    Article  CAS  Google Scholar 

  15. Allison RR, Mota HC, Bagnato VS, Sibata CH (2008) Bio-nanotechnology and photodynamic therapy-state of the art review. Photodiagn Photodyn Ther 5:19–28. https://doi.org/10.1016/j.pdpdt.2008.02.001

    Article  CAS  Google Scholar 

  16. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637. https://doi.org/10.1016/j.addr.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  17. Ballut S, Makky A, Chauvin B, Michel JP, Kasselouri A, Maillard P, Rosilio V (2012) Tumor targeting in photodynamic therapy. From glycoconjugated photosensitizers to glycodendrimeric one. Concept, design and properties. Org Biomol Chem 10:4485–4495. https://doi.org/10.1039/c2ob25181g

    Article  CAS  PubMed  Google Scholar 

  18. Moylan C, Scanlan E, Senge M (2015) Chemical synthesis and medicinal applications of glycoporphyrins. Curr Med Chem 22:2238–2348. https://doi.org/10.2174/0929867322666150429113104

    Article  CAS  PubMed  Google Scholar 

  19. Van Driel PBAA, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, De Bruijn HS, Van Diest PJ, Vahrmeijer AL, Van Bergen En Henegouwen PMP, Van De Velde CJH, Löwik CWGM, Robinson DJ, Oliveira S (2016) EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 229:93–105. https://doi.org/10.1016/j.jconrel.2016.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li F, Liu Q, Liang Z, Wang J, Pang M, Huang W, Wu W, Hong Z (2016) Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Org Biomol Chem 14:3409–3422. https://doi.org/10.1039/c6ob00122j

    Article  CAS  PubMed  Google Scholar 

  21. Stallivieri A, Colombeau L, Jetpisbayeva G, Moussaron A, Myrzakhmetov B, Arnoux P, Acherar S, Vanderesse R, Frochot C (2017) Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: synthesis and photophysical properties. Bioorg Med Chem 25:1–10. https://doi.org/10.1016/j.bmc.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  22. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM (2015) Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 7:1782–1790. https://doi.org/10.1039/c4nr04853a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou Z, Deng K, Li C, Deng X, Lian H, Cheng Z, Jin D, Lin J (2016) Biomaterials photosensitizers nanoplatform by fully utilizing Nd3+ −sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 101:32–46. https://doi.org/10.1016/j.biomaterials.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  24. Luo GF, Chen WH, Hong S, Cheng Q, Qiu WX, Zhang XZ (2017) A self-transformable pH-driven membrane-anchoring photosensitizer for effective photodynamic therapy to inhibit tumor growth and metastasis. Adv Funct Mater 27:1–13. https://doi.org/10.1002/adfm.201702122

    Article  CAS  Google Scholar 

  25. Li X, Zheng BY, Ke MR, Zhang Y, Huang JD, Yoon J (2017) A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics 7:2746–2756. https://doi.org/10.7150/thno.18861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konan YN, Gurny R, Allémann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 66:89–106. https://doi.org/10.1016/S1011-1344(01)00267-6

    Article  CAS  Google Scholar 

  27. Hong EJ, Choi DG, Suk M (2016) Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B 6:297–307. https://doi.org/10.1016/j.apsb.2016.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park J, Jiang Q, Feng D, Mao L, Zhou HC (2016) Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138:3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  PubMed  Google Scholar 

  29. Vrouenraets MB, Visser G, Snow GB, van Dongen GA (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23:505–522. PMID: 12680139

    CAS  PubMed  Google Scholar 

  30. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591. https://doi.org/10.2147/IJN.S36111

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    Article  CAS  Google Scholar 

  32. Tasso TT, Tsubone TM, Baptista MS, Mattiazzi LM, Acunha TV, Iglesias BA (2017) Isomeric effect on the properties of tetraplatinated porphyrins showing optimized phototoxicity for photodynamic therapy. Dalt Trans:11037–11045. https://doi.org/10.1039/C7DT01205E

  33. Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54:659. https://doi.org/10.1111/j.1751-1097.1991.tb02071.x

    Article  CAS  PubMed  Google Scholar 

  34. Foote CS (1968) Mechanisms of photosensitized oxidation. Science 162:963–970. https://doi.org/10.1126/science.162.3857.963

    Article  CAS  PubMed  Google Scholar 

  35. Bacellar IOL, Tsubone TM, Pavani C, Baptista MS (2015) Photodynamic efficiency: from molecular photochemistry to cell death. Int J Mol Sci 16:20523–20559. https://doi.org/10.3390/ijms160920523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher WM, O’Shea DF (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631. https://doi.org/10.1021/ja047649e

    Article  CAS  PubMed  Google Scholar 

  37. Volchkov VV, Ivanov VL, Uzhinov BM (2010) Induced intersystem crossing at the fluorescence quenching of laser dye 7-amino-1,3-naphthalenedisulfonic acid by paramagnetic metal ions. J Fluoresc 20:299–303. https://doi.org/10.1007/s10895-009-0555-y

    Article  CAS  PubMed  Google Scholar 

  38. Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2:916–966. https://doi.org/10.7150/thno.4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moan J, Berg K, Kvam E, Western A, Malik Z, Ruck A (2007) Intracellular localization of photosensitizers. In: Bock G, Harnett S (eds) Photosensitizing compounds: their chemistry, biology and clinical use, 1st edn. Novartis Foundation Symposia, pp 95–111, Wiley, New Jersey, USA

    Google Scholar 

  40. Wilson BC, Patterson MS, Lilge L (1997) Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci 12:182–199. https://doi.org/10.1007/BF02765099

    Article  CAS  PubMed  Google Scholar 

  41. Chen Q, Wen J, Li H, Xu Y, Liu F, Sun S (2016) Recent advances in different modal imaging-guided photothermal therapy. Biomaterials 106:144–166. https://doi.org/10.1016/j.biomaterials.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  42. Jin CS, Lovell JF, Chen J, Zheng G (2013) Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7:2541–2550. https://doi.org/10.1021/nn3058642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236. https://doi.org/10.1529/biophysj.107.112565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber G, Charitat T, Baptista MS, Uchoa AF, Pavani C, Junqueira HC, Guo Y, Baulin VA, Itri R, Marques CM, Schroder AP (2014) Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter 10:4241–4247. https://doi.org/10.1039/c3sm52740a

    Article  CAS  PubMed  Google Scholar 

  45. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 380:780–784. https://doi.org/10.1016/j.bbrc.2009.01.147

    Article  CAS  PubMed  Google Scholar 

  46. Riske KA, Sudbrack TP, Archilha NL, Uchoa AF, Schroder AP, Marques CM, Baptista MS, Itri R (2009) Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer. Biophys J 97:1362–1370. https://doi.org/10.1016/j.bpj.2009.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boonnoy P, Jarerattanachat V, Karttunen M, Wong-Ekkabut J (2015) Bilayer deformation, pores, and micellation induced by oxidized lipids. J Phys Chem Lett 6:4884–4888. https://doi.org/10.1021/acs.jpclett.5b02405

    Article  CAS  PubMed  Google Scholar 

  48. Bacellar I, Oliveira MC, Dantas L, Costa E, Junqueira HC, Martins WK, Durantini AM, Cosa G, Di Mascio P, Wainwright M, Miotto R, Cordeiro RM, Miyamoto S, Baptista MS (2018) Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J Am Chem Soc 140:9606–9615. https://doi.org/10.1021/jacs.8b05014

    Article  CAS  PubMed  Google Scholar 

  49. Bacellar IOL, Baptista MS (2019) Mechanisms of photosensitized lipid oxidation and membrane permeabilization. ACS Omega 4:21636–21646. https://doi.org/10.1021/acsomega.9b03244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dabrowski JM, Arnaut LG (2015) Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 14:1765–1780. https://doi.org/10.1039/x0xx00000x

    Article  PubMed  Google Scholar 

  51. Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011) Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med 51:824–833. https://doi.org/10.1016/j.freeradbiomed.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  52. Kessel D (2012) Subcellular targets for photodynamic therapy: implications for initiation of apoptosis and autophagy. J Natl Compr Cancer Netw 1:S56–S59. https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial

    Article  Google Scholar 

  53. Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin X-M, Kessel D (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell Death Differ 9:934–944. https://doi.org/10.1038/sj.cdd.4401048

    Article  CAS  PubMed  Google Scholar 

  54. Tsubone TM, Martins WK, Pavani C, Junqueira HC, Itri R, Baptista MS (2017) Enhanced efficiency of cell death by lysosome-specific photodamage. Sci Rep 7:1–19. https://doi.org/10.1038/s41598-017-06788-7

    Article  CAS  Google Scholar 

  55. MacDonald IJ, Morgan J, Bellnier DA, Paszkiewicz GM, Whitaker JE, Litchfield DJ, Dougherty TJ (1999) Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol 70:789–797. https://doi.org/10.1111/j.1751-1097.1999.tb08284.x

    Article  CAS  PubMed  Google Scholar 

  56. Moserova I, Kralova J (2012) Role of er stress response in photodynamic therapy: ros generated in different subcellular compartments trigger diverse cell death pathways. PLoS One 7:1–16. https://doi.org/10.1371/journal.pone.0032972

    Article  CAS  Google Scholar 

  57. Gomes-da-Silva LC, Zhao L, Bezu L, Zhou H, Sauvat A, Liu P, Durand S, Leduc M, Souquere S, Loos F, Mondragón L, Sveinbjørnsson B, Rekdal Ø, Boncompain G, Perez F, Arnaut LG, Kepp O, Kroemer G (2018) Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. EMBO J 37:1–18. https://doi.org/10.15252/embj.201798354

    Article  CAS  Google Scholar 

  58. Pinto A, Mace Y, Drouet F, Bony E, Boidot R, Draoui N, Lobysheva I, Corbet C, Polet F, Martherus R, Deraedt Q, Rodríguez J, Lamy C, Schicke O, Delvaux D, Louis C, Kiss R, Kriegsheim AV, Dessy C, Elias B, Quetin-Leclercq J, Riant O, Feron O (2016) A new ER-specific photosensitizer unravels 1O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT. Oncogene 35:3976–3985. https://doi.org/10.1038/onc.2015.474

    Article  CAS  PubMed  Google Scholar 

  59. Yuan B, Liu J, Guan R, Jin C, Ji L, Chao H (2019) Endoplasmic reticulum targeted cyclometalated iridium(iii) complexes as efficient photodynamic therapy photosensitizers. Dalt Trans 48:6408–6415. https://doi.org/10.1039/c9dt01072f

    Article  CAS  Google Scholar 

  60. Berg K, Madslien K, Bommer JC, Oftebro R, Winkelman JW, Moan J (1991) Light induced relocalization of sulfonated meso-tetraphenylporphines in NHIK 3025 cells and effects of dose fractionation. Photochem Photobiol 53:203–210. https://doi.org/10.1111/j.1751-1097.1991.tb03924.x

    Article  CAS  PubMed  Google Scholar 

  61. Kessel D, Conley M, Vicente MGH Jr, Reiners JJ (2005) Studies on the subcellular localization of the porphycene CPO. Photochem Photobiol 81:569–572. https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sever R, Glass CK (2013) Signaling by nuclear receptors. Cold Spring Harb Perspect Biol 5:1–4. https://doi.org/10.1101/cshperspect.a016709

    Article  CAS  Google Scholar 

  63. Sharman WM, Van Lier JE, Allen CM (2004) Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 56:53–76. https://doi.org/10.1016/j.addr.2003.08.015

    Article  CAS  PubMed  Google Scholar 

  64. El-Akra N, Noirot A, Faye J-C, Souchard J-P (2006) Synthesis of estradiol-pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells. Photochem Photobiol Sci 5:996. https://doi.org/10.1039/b606117f

    Article  CAS  PubMed  Google Scholar 

  65. Naik A, Rubbiani R, Gasser G, Spingler B (2014) Visible-light-induced annihilation of tumor cells with platinum-porphyrin conjugates. Angew Chemie Int Ed 53:6938–6941. https://doi.org/10.1002/anie.201400533

    Article  CAS  Google Scholar 

  66. Agnez-Lima LF, Melo JTA, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MHG, Di Mascio P, Galhardo RS, Menck CFM (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res Rev Mutat Res 751:15–28. https://doi.org/10.1016/j.mrrev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  67. Woods JA, Traynor NJ, Brancaleon L, Moseley H (2004) The effect of photofrin on DNA strand breaks and base oxidation in HaCaT keratinocytes: a comet assay study. Photochem Photobiol 79:105–113. https://doi.org/10.1111/j.1751-1097.2004.tb09864.x

    Article  CAS  PubMed  Google Scholar 

  68. Oleinick NL, Evans HH (1998) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 150:S146. https://doi.org/10.2307/3579816

    Article  CAS  PubMed  Google Scholar 

  69. Sasmal PK, Patra AK, Nethaji M, Chakravarty AR (2007) DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene α-amino acids and phenanthroline bases in the photodynamic therapy window. Inorg Chem 46:11112–11121. https://doi.org/10.1021/ic7011793

    Article  CAS  PubMed  Google Scholar 

  70. Matt S, Hofmann TG (2016) The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 73:2829–2850. https://doi.org/10.1007/s00018-016-2130-4

    Article  CAS  PubMed  Google Scholar 

  71. Nowsheen S, Yang ES, Biology I (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34:10–18

    Google Scholar 

  72. Acedo P, Stockert JC, Cañete M, Villanueva A (2014) Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death Dis 5:1–12. https://doi.org/10.1038/cddis.2014.77

    Article  CAS  Google Scholar 

  73. Kessel D, Reiners JJ (2014) Enhanced efficacy of photodynamic therapy via a sequential targeting protocol. Photochem Photobiol 90:889–895. https://doi.org/10.1111/php.12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martins WK, Santos NF, Bacellar I, Viotto AC, Tsubone T, Matsukuma AY, de Paiva AB, Abrantes PS, Luís Gustavo Dias MSB (2019) Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 15:259–279. https://doi.org/10.1080/15548627.2018.1515609

    Article  CAS  PubMed  Google Scholar 

  75. Pavani C, Francisco CML, Gobo NRS, De Oliveira KT, Baptista MS (2016) Improved photodynamic activity of a dual phthalocyanine-ALA photosensitiser. New J Chem 40:9666–9671. https://doi.org/10.1039/c6nj02073a

    Article  CAS  Google Scholar 

  76. Chen H, Tian J, He W, Guo Z (2015) H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc 137:1539–1547. https://doi.org/10.1021/ja511420n

    Article  CAS  PubMed  Google Scholar 

  77. Hu W, Xie M, Zhao H, Tang Y, Yao S, He T, Ye C, Wang Q, Lu X, Huang W, Fan Q (2018) Nitric oxide activatable photosensitizer accompanying extremely elevated two-photon absorption for efficient fluorescence imaging and photodynamic therapy. Chem Sci 9:999–1005. https://doi.org/10.1039/c7sc04044j

    Article  CAS  PubMed  Google Scholar 

  78. Chiba M, Ichikawa Y, Kamiya M, Komatsu T, Ueno T, Hanaoka K, Nagano T, Lange N, Urano Y (2017) An activatable photosensitizer targeted to γ-glutamyltranspeptidase. Angew Chemie Int Ed 56:10418–10422. https://doi.org/10.1002/anie.201704793

    Article  CAS  Google Scholar 

  79. Ichikawa Y, Kamiya M, Obata F, Miura M, Terai T, Komatsu T, Ueno T, Hanaoka K, Nagano T, Urano Y (2014) Selective ablation of β-galactosidase-expressing cells with a rationally designed activatable photosensitizer. Angew Chemie Int Ed 53:6772–6775. https://doi.org/10.1002/anie.201403221

    Article  CAS  Google Scholar 

  80. Jin CS, Cui L, Wang F, Chen J, Zheng G (2014) Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater 3:1240–1249. https://doi.org/10.1002/adhm.201300651

    Article  CAS  PubMed  Google Scholar 

  81. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:1–10. https://doi.org/10.1155/2013/972913

    Article  CAS  Google Scholar 

  82. Kolemen S, Işlk M, Kim GM, Kim D, Geng H, Buyuktemiz M, Karatas T, Zhang XF, Dede Y, Yoon J, Akkaya EU (2015) Intracellular modulation of excited-state dynamics in a chromophore dyad: differential enhancement of photocytotoxicity targeting cancer cells. Angew Chemie Int Ed 54:5340–5344. https://doi.org/10.1002/anie.201411962

    Article  CAS  Google Scholar 

  83. Li Z, Liu Y, Chen L, Hu X, Xie Z (2017) A glutathione-activatable photodynamic and fluorescent imaging monochromatic photosensitizer. J Mater Chem B 5:4239–4245. https://doi.org/10.1039/c7tb00724h

    Article  CAS  PubMed  Google Scholar 

  84. Jia L, Ding L, Tian J, Lei Bao HY, Ju H, Yu J-S (2015) Aptamer loaded MoS2 nanoplates as nanoprobe for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 7:15953–15961. https://doi.org/10.1039/b000000x

    Article  PubMed  Google Scholar 

  85. Shen Y, Tian Q, Sun Y, Xu JJ, Ye D, Chen HY (2017) ATP-Activatable photosensitizer enables dual fluorescence imaging and targeted photodynamic therapy of tumor. Anal Chem 89:13610–13617. https://doi.org/10.1021/acs.analchem.7b04197

    Article  CAS  PubMed  Google Scholar 

  86. Li X, Kolemen S, Yoon J, Akkaya EU (2017) Activatable photosensitizers: agents for selective photodynamic therapy. Adv Funct Mater 27. https://doi.org/10.1002/adfm.201604053

  87. Xiong H, Zhou K, Yan Y, Miller JB, Siegwart DJ (2018) Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy. ACS Appl Mater Interfaces 10:16335–16343. https://doi.org/10.1021/acsami.8b04710

    Article  CAS  PubMed  Google Scholar 

  88. Tang Q, Xiao W, Li J, Chen D, Zhang Y, Shao J, Dong X (2018) A fullerene-rhodamine B photosensitizer with pH-activated visible-light absorbance/fluorescence/photodynamic therapy. J Mater Chem B 6:2778–2784. https://doi.org/10.1039/c8tb00372f

    Article  CAS  PubMed  Google Scholar 

  89. Xue F, Wei P, Ge X, Zhong Y, Cao C, Yu D, Yi T (2018) A pH-responsive organic photosensitizer specifically activated by cancer lysosomes. Dyes Pigments 156:285–290. https://doi.org/10.1016/j.dyepig.2018.04.008

    Article  CAS  Google Scholar 

  90. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue : potential exploitation for the treatment of cancer. Cancer Res:1194–1198

    Google Scholar 

  91. Yogo T, Urano Y, Mizushima A, Sunahara H, Inoue T, Hirose K, Iino M, Kikuchi K, Nagano T (2008) Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer. Proc Natl Acad Sci 105:28–32. https://doi.org/10.1073/pnas.0611717105

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim H, Kim Y, Kim IH, Kim K, Choi Y (2014) ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages. Theranostics 4:1–11. https://doi.org/10.7150/thno.7101

    Article  CAS  Google Scholar 

  93. Yuan A, Tang X, Qiu X, Jiang K, Wu J, Hu Y (2015) Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem Commun 51:3340–3342. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  94. Zhang Y, He L, Wu J, Wang K, Wang J, Dai W, Yuan A, Wu J, Hu Y (2016) Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 107:23–32. https://doi.org/10.1016/j.biomaterials.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  95. Van De Winckel E, Schneider RJ, De La Escosura A, Torres T (2015) Multifunctional logic in a photosensitizer with triple-mode fluorescent and photodynamic activity. Chem Eur J 21:18551–18556. https://doi.org/10.1002/chem.201503830

    Article  CAS  PubMed  Google Scholar 

  96. Lau JTF, Lo PC, Jiang XJ, Wang Q, Ng DKP (2014) A dual activatable photosensitizer toward targeted photodynamic therapy. J Med Chem 57:4088–4097. https://doi.org/10.1021/jm500456e

    Article  CAS  PubMed  Google Scholar 

  97. Ozlem S, Akkaya EU (2009) Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J Am Chem Soc 131:48–49. https://doi.org/10.1021/ja808389t

    Article  CAS  PubMed  Google Scholar 

  98. John JV, Chung CW, Johnson RP, Jeong Y, Chung KD, Kang DH, Suh H, Chen H, Kim I (2016) Dual stimuli-responsive vesicular nanospheres fabricated by lipopolymer hybrids for tumor-targeted photodynamic therapy. Biomacromolecules 17:20–31. https://doi.org/10.1021/acs.biomac.5b01474

    Article  CAS  PubMed  Google Scholar 

  99. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7:283–289. https://doi.org/10.1039/b712847a

    Article  CAS  PubMed  Google Scholar 

  100. Atif M, Zellweger M, Wagnieres G (2016) Review of the role played by the photosensitizer’s photobleaching during photodynamic therapy. J Optoelectron Adv Mater 18:338–350

    CAS  Google Scholar 

  101. Bonnett R, Martinez G (2001) Photobleaching of sensitizers used in photodynamic therapy. Tetrahedron 57:9513–9547. https://doi.org/10.1016/S0040-4020(01)00952-8

    Article  CAS  Google Scholar 

  102. Bernas T, Zarȩbski M, Cook RR, Dobrucki JW (2004) Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J Microsc 215:281–296. https://doi.org/10.1111/j.0022-2720.2004.01377.x

    Article  CAS  PubMed  Google Scholar 

  103. Demchenko AP (2020) Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 8:022001. https://doi.org/10.1088/2050-6120/ab7365

    Article  CAS  PubMed  Google Scholar 

  104. Sobbi AK, Wohrle D, Schlettweinb D (1993) Photochemical stability of various porphyrins in solution and as thin film electrodes. J Chem Soc Perkin Trans 2:481–488. https://doi.org/10.1039/p29930000481

    Article  Google Scholar 

  105. Hadjur C, Lange N, Rebstein J, Monnier P, van den Bergh H, Wagnières G (1998) Spectroscopic studies of photobleaching and photoproduct formation of meta(tetrahydroxyphenyl) chlorin (m-THPC) used in photodynamic therapy. J Photochem Photobiol B Biol 45:170–178. https://doi.org/10.1016/S1011-1344(98)00177-8

    Article  CAS  Google Scholar 

  106. Arnaut LG, Pereira MM, Da̧browski JM, EFF S, Schaberle FA, Abreu AR, Rocha LB, Barsan MM, Urbańska K, Stochel G, Brett CMA (2014) Photodynamic therapy efficacy enhanced by dynamics: the role of charge transfer and photostability in the selection of photosensitizers. Chem Eur J 20:5346–5357. https://doi.org/10.1002/chem.201304202

    Article  CAS  PubMed  Google Scholar 

  107. Maree SE, Nyokong T (2001) Syntheses and photochemical properties of octa-substituted phthalocyaninato zinc complexes. J Porphyr Phthalocyanines 5:782–792. https://doi.org/10.1002/jpp.388

    Article  CAS  Google Scholar 

  108. Kuznetsova NA, Okunchikov VV, Derkacheva VM, Kaliya OL, Lukyanets EA (2005) Photooxidation of metallophthalocyanines : the effects of singlet oxygen and PcM-O 2 complex formation. J Porphyr Phthalocyanines 9:393–397. https://doi.org/10.1142/S1088424605000496

    Article  CAS  Google Scholar 

  109. Finlay JC, Mitra S, Foster TH (2002) In vivo mTHPC photobleaching in normal rat skin exhibits unique irradiance-dependent features. Photochem Photobiol 75:282–288

    Article  CAS  PubMed  Google Scholar 

  110. Coutier S, Mitra S, Bezdetnaya LN, Parache RM, Georgakoudi I, Foster TH, Guillemin F (2001) Effects of fluence rate on cell survival and photobleaching in meta-tetra-(hydroxyphenyl)chlorin-photosensitized Colo 26 multicell tumor spheroids. Photochem Photobiol 73:297–303. https://doi.org/10.1562/0031-8655(2001)0730297eofroc2.0.co2

    Article  CAS  PubMed  Google Scholar 

  111. Song L, Varma CAGO, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70:2959–2968. https://doi.org/10.1016/S0006-3495(96)79866-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sobotta L, Fita P, Szczolko W, Wrotynski M, Wierzchowski M, Goslinski T, Mielcarek J (2013) Functional singlet oxygen generators based on porphyrazines with peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups. J Photochem Photobiol A Chem 269:9–16. https://doi.org/10.1016/j.jphotochem.2013.06.018

    Article  CAS  Google Scholar 

  113. Piskorz J, Konopka K, Düzgüneş N, Gdaniec Z, Mielcarek J, Goslinski T (2014) Diazepinoporphyrazines containing peripheral styryl substituents and their promising nanomolar photodynamic activity against oral cancer cells in liposomal formulations. ChemMedChem 9:1775–1782. https://doi.org/10.1002/cmdc.201402085

    Article  CAS  PubMed  Google Scholar 

  114. Rosenthal I (1978) Photochemical stability of rhodamine 6G in solution. Opt Commun 24:164–166

    Article  CAS  Google Scholar 

  115. Ogunsipe A, Maree D, Nyokong T (2003) Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 650:131–140. https://doi.org/10.1016/S0022-2860(03)00155-8

    Article  CAS  Google Scholar 

  116. Tasso TT, Schlothauer JC, Junqueira HC, Matias TA, Araki K, Salvador EL, Antonio FC, de Mello PH, Baptista MS (2019) Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. J Am Chem Soc 141:15547–15556. https://doi.org/10.1021/jacs.9b05991

    Article  CAS  PubMed  Google Scholar 

  117. Aveline B, Hasan T, Redmond RW (1994) Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring a (bpd-ma). Photochem Photobiol 59:328–335. https://doi.org/10.1111/j.1751-1097.1994.tb05042.x

    Article  CAS  PubMed  Google Scholar 

  118. Spikes JD (1992) Quantum yields and kinetics of the photobleaching of hematoporphyrin, porphine and uroporphyrin. Photochem Photobiol 55:797–808

    Article  CAS  PubMed  Google Scholar 

  119. Diaspro A, Chirico G, Usai C, Ramoino P, Dobrucki J (2006) Photobleaching. In: Handbook of biological confocal microscopy, pp 690–702, Springer, Boston, MA

    Google Scholar 

  120. Eggeling C, Widengren J, Rigler R, Seidel CA (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659. https://doi.org/10.1021/ac980027p

    Article  CAS  PubMed  Google Scholar 

  121. Goslinski T, Osmalek T, Mielcarek J (2009) Photochemical and spectral characterization of peripherally modified porphyrazines. Polyhedron 28:3839–3843. https://doi.org/10.1016/j.poly.2009.08.031

    Article  CAS  Google Scholar 

  122. Georgakoudi I, Foster TH (1998) Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry. Photochem Photobiol 67:612–625. https://doi.org/10.1111/j.1751-1097.1998.tb09102.x

    Article  CAS  PubMed  Google Scholar 

  123. Da̧browski JM, Arnaut LG, Pereira MM, Monteiro CJP, Urbańska K, Simões S, Stochel G (2010) New halogenated water-soluble chlorin and bacteriochlorin as photostable PDT sensitizers: synthesis, spectroscopy, photophysics, and in vitro photosensitizing efficacy. ChemMedChem 5:1770–1780. https://doi.org/10.1002/cmdc.201000223

    Article  CAS  PubMed  Google Scholar 

  124. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T (2005) Highly efficient and photostable photosensitizer based on BODIPY chromophore. J Am Chem Soc 127:12162–12163. https://doi.org/10.1021/ja0528533

    Article  CAS  PubMed  Google Scholar 

  125. Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I (2012) Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Anal Chem 84:6723–6730. https://doi.org/10.1021/ac3011796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício S. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tasso, T.T., Baptista, M.S. (2022). Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics