Skip to main content

Multiresidue Pesticide Analysis in Okra (Ladyfinger) Using Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS)

  • Protocol
  • First Online:
Pesticide Toxicology

Abstract

The presence of pesticide residues in food and vegetables is a growing concern for consumers. In order to monitor these residues reliably, a selective and sensitive, multi-residue system has been developed and validated in okra (ladyfinger) by gas chromatography-tandem mass spectrometry (GC-MS/MS). The sample preparation procedure involves the extraction of the sample using the QuEChERS procedure with ethyl acetate, and the cleaning process involves the use of primary secondary amine (PSA) and the processing of two multiple reaction monitoring (MRM) transformations for each analyte by GC-MS/MS in electron impact (EI) mode. Precision and accuracy were tested by recovery studies. The process provides a cheaper and better alternative to the current multi-residue extraction techniques in the okra samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srivastava A, Rai S, Sonker AK et al (2017) Simultaneous determination of multiclass pesticide residues in human plasma using a mini QuEChERS method. Anal Bioanal Chem 409(15):3757–3765

    Article  CAS  Google Scholar 

  2. Qin G, Zou K, Li Y, Chen Y, He F, Ding G (2016) Pesticide residue determination in vegetables from western China applying gas chromatography with mass spectrometry. Biomed Chromatogr 30(9):1430–1440

    Article  CAS  Google Scholar 

  3. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177

    Article  CAS  Google Scholar 

  4. Guan H, Brewer WE, Garris ST, Morgan SL (2010) Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A 1217(12):1867–1874

    Article  CAS  Google Scholar 

  5. Hercegová A, Dömötörová M, Matisova E (2007) Sample preparation methods in the analysis of pesticide residues in baby food with subsequent chromatographic determination. J Chromatogr A 1153(1–2):54–73

    Article  Google Scholar 

  6. Chowdhury MAZ, Fakhruddin ANM, Islam MN, Moniruzzaman M, Gan SH, Alam MK (2013) Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography–mass spectrometry. Food Control 34(2):457–465

    Article  Google Scholar 

  7. Fernández-Alba AR, García-Reyes JF (2008) Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC-MS. Trends Anal Chem 27(11):973–990

    Article  Google Scholar 

  8. Machado I, Gérez N, Pistón M, Heinzen H, Cesio MV (2017) Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem 227:227–236

    Article  CAS  Google Scholar 

  9. Farajzadeh MA, Mogaddam MRA, Ghorbanpour H (2014) Development of a new microextraction method based on elevated temperature dispersive liquid–liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. J Chromatogr A 1347:8–16

    Article  CAS  Google Scholar 

  10. Jia G, Lv C, Zhu W, Qiu J, Wang X, Zhou Z (2008) Applicability of cloud point extraction coupled with microwave-assisted back-extraction to the determination of organophosphorous pesticides in human urine by gas chromatography with flame photometry detection. J Hazard Mater 159(2–3):300–305

    Article  CAS  Google Scholar 

  11. de Perre C, Whiting SA, Lydy MJ (2015) A simultaneous extraction method for organophosphate, pyrethroid, and neonicotinoid insecticides in aqueous samples. Arch Environ Contam Toxicol 68(4):745–756

    Article  Google Scholar 

  12. Wang J, Qiu H, Shen H, Pan J, Dai X, Yan Y et al (2016) Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water. Biosens Bioelectron 85:387–394

    Article  CAS  Google Scholar 

  13. Lee J, Kim L, Shin Y, Lee J, Lee J, Kim E, Moon J-K, Kim JH (2017) Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC-MS/MS. J Agr Food Chem 65(16):3387–3395

    Article  CAS  Google Scholar 

  14. Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B (2016) Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 183(1):203–210

    Article  CAS  Google Scholar 

  15. Wang P, Rashid M, Liu J, Hu M, Zhong G (2016) Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chem 212:420–426

    Article  CAS  Google Scholar 

  16. Pérez-Parada A, Colazzo M, Besil N, Heinzen H, Dellacassa E, Cesio V, Fernández A (2011) Pesticide residues in natural products with pharmaceutical use: occurrence, analytical advances and perspectives. In: Stoytcheva M (ed) Pesticides in the modern world—trends in pesticides analysis. Intech, Rijeka

    Google Scholar 

  17. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    Article  CAS  Google Scholar 

  18. Rajski Ł, Lozano A, Belmonte-Valles N, Uclés A, Uclés S, Mezcua M, Fernandez-Alba AR (2013) Comparison of three multiresidue methods to analyse pesticides in green tea with liquid and gas chromatography/tandem mass spectrometry. Analyst 138(3):921–931

    Article  CAS  Google Scholar 

  19. Babushkina EA, Belokopytova LV, Grachev AM, Meko DM, Vaganov EA (2017) Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg Environ Chang 17(6):1725–1737

    Article  Google Scholar 

  20. Besil N, Pequeño F, Alonzo N, Hladki R, Cesio MV, Heinzen H (2017) Evaluation of different QuEChERS procedures for pesticide residues determination in Calendula officinalis (L) inflorescences. J Appl Res Med Aromat Plants 7:143–148

    Google Scholar 

  21. Pérez-Parada A, Colazzo M, Besil N, Dellacassa E, Cesio V, Heinzen H, Fernández-Alba AR (2011) Pesticide residues in natural products with pharmaceutical use: occurrence, analytical advances and perspectives. In: Stoytcheva M (ed) Pesticides in the modern world—trends in pesticides analysis. IntechOpen, London

    Google Scholar 

  22. Nantia EA, Moreno-González D, Manfo FP, Gámiz-Gracia L, García-Campaña AM (2017) QuEChERS-based method for the determination of carbamate residues in aromatic herbs by UHPLC-MS/MS. Food Chem 216:334–341

    Article  CAS  Google Scholar 

  23. Béguin S, Jadas-Hécart A, Tabet JC, Communal PY (2006) Protocols for optimizing MS/MS parameters with an ion-trap GC-MS instrument. J Mass Spectrom 41(10):1304–1314

    Article  Google Scholar 

  24. Lehotay SJ, Tully J, Garca AV, Contreras M, Mol H, Heinke V et al (2007) Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. J AOAC Int 90(2):485–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khetagoudar, M.C., Chetti, M.B., Kumar, A.P., Bilehal, D.C. (2022). Multiresidue Pesticide Analysis in Okra (Ladyfinger) Using Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS). In: Gallardo, E., Barroso, M. (eds) Pesticide Toxicology. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1928-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1928-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1927-8

  • Online ISBN: 978-1-0716-1928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics