Skip to main content

Genetically Engineered Hamster Models of Dyslipidemia and Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Animal models of human diseases play an extremely important role in biomedical research. Among them, mice are widely used animal models for translational research, especially because of ease of generation of genetically engineered mice. However, because of the great differences in biology between mice and humans, translation of findings to humans remains a major issue. Therefore, the exploration of models with biological and metabolic characteristics closer to those of humans has never stopped.

Although pig and nonhuman primates are biologically similar to humans, their genetic engineering is technically difficult, the cost of breeding is high, and the experimental time is long. As a result, the application of these species as model animals, especially genetically engineered model animals, in biomedical research is greatly limited.

In terms of lipid metabolism and cardiovascular diseases, hamsters have several characteristics different from rats and mice, but similar to those in humans. The hamster is therefore an ideal animal model for studying lipid metabolism and cardiovascular disease because of its small size and short reproduction period. However, the phenomenon of zygote division, which was unexpectedly blocked during the manipulation of hamster embryos for some unknown reasons, had plagued researchers for decades and no genetically engineered hamsters have therefore been generated as animal models of human diseases for a long time. After solving the problem of in vitro development of hamster zygotes, we successfully prepared enhanced green fluorescent protein (eGFP) transgenic hamsters by microinjection of lentiviral vectors into the zona pellucida space of zygotes. On this basis, we started the development of cardiovascular disease models using the hamster embryo culture system combined with the novel genome editing technique of clustered regularly interspaced short palindromic repeats (CRISPR )/CRISPR associated protein 9 (Cas9). In this chapter, we will introduce some of the genetically engineered hamster models with dyslipidemia and the corresponding characteristics of these models. We hope that the genetically engineered hamster models can be further recognized and complement other genetically engineered animal models such as mice, rats, and rabbits. This will lead to new avenues and pathways for the study of lipid metabolism and its related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishima T, Tajima Y, Kuroki T, Kosaka T, Adachi T, Kitasato A, Tsuneoka N, Kitajima T, Kanematsu T (2009) Chemopreventative effect of an inducible nitric oxide synthase inhibitor, ONO-1714, on inflammation-associated biliary carcinogenesis in hamsters. Carcinogenesis 30(10):1763–1767. https://doi.org/10.1093/carcin/bgp194

    Article  CAS  PubMed  Google Scholar 

  2. Ancel C, Bentsen AH, Sébert ME, Tena-Sempere M, Mikkelsen JD, Simonneaux V (2012) Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male Syrian hamster: the exception proves the rule. Endocrinology 153(3):1352–1363. https://doi.org/10.1210/en.2011-1622

    Article  CAS  PubMed  Google Scholar 

  3. Rohwer RG (1984) Virus like sensitivity of the scrapie agent to heat inactivation. Science 223(4636):600–602. https://doi.org/10.1126/science.6420887

    Article  CAS  PubMed  Google Scholar 

  4. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27(8):1706–1721. https://doi.org/10.1161/atvbaha.107.142570

    Article  CAS  PubMed  Google Scholar 

  5. Altschul R (1950) Experimental cholesterol arteriosclerosis. II. Changes produced in golden hamsters and in guinea pigs. Am Heart J 40(3):401–409. https://doi.org/10.1016/0002-8703(50)90323-1

    Article  CAS  PubMed  Google Scholar 

  6. Coyne MJ, Bonorris GG, Chung A, Cove H, Schoenfield LJ (1977) Dietary cholesterol affects chenodeoxycholic acid action on biliary lipids. Gastroenterology 72(5 Pt 1):927–931

    Article  CAS  PubMed  Google Scholar 

  7. Filip DA, Nistor A, Bulla A, Radu A, Lupu F, Simionescu M (1987) Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis 67(2–3):199–214. https://doi.org/10.1016/0021-9150(87)90280-2

    Article  CAS  PubMed  Google Scholar 

  8. Cincotta AH, Meier AH (1984) Circadian rhythms of lipogenic and hypoglycaemic responses to insulin in the golden hamster (Mesocricetus auratus). J Endocrinol 103(2):141–146. https://doi.org/10.1677/joe.0.1030141

    Article  CAS  PubMed  Google Scholar 

  9. Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68(1–2):159–173. https://doi.org/10.1016/0021-9150(87)90106-7

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Song W, Redinger RN (1996) Effects of dietary cholesterol on hepatic production of lipids and lipoproteins in isolated hamster liver. Hepatology 24(2):424–434. https://doi.org/10.1002/hep.510240222

    Article  CAS  PubMed  Google Scholar 

  11. Woollett LA, Kearney DM, Spady DK (1997) Diet modification alters plasma HDL cholesterol concentrations but not the transport of HDL cholesteryl esters to the liver in the hamster. J Lipid Res 38(11):2289–2302

    Article  CAS  PubMed  Google Scholar 

  12. Otto J, Ordovas JM, Smith D, van Dongen D, Nicolosi RJ, Schaefer EJ (1995) Lovastatin inhibits diet induced atherosclerosis in F1B golden Syrian hamsters. Atherosclerosis 114(1):19–28. https://doi.org/10.1016/0021-9150(94)05457-t

    Article  CAS  PubMed  Google Scholar 

  13. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104(4):448–454. https://doi.org/10.1161/hc2901.091399

    Article  CAS  PubMed  Google Scholar 

  14. Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K (2000) Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 275(12):8416–8425. https://doi.org/10.1074/jbc.275.12.8416

    Article  CAS  PubMed  Google Scholar 

  15. Taghibiglou C, Rudy D, Van Iderstine SC, Aiton A, Cavallo D, Cheung R, Adeli K (2000) Intracellular mechanisms regulating apoB-containing lipoprotein assembly and secretion in primary hamster hepatocytes. J Lipid Res 41(4):499–513

    Article  CAS  PubMed  Google Scholar 

  16. Adeli K, Taghibiglou C, Van Iderstine SC, Lewis GF (2001) Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc Med 11(5):170–176. https://doi.org/10.1016/s1050-1738(01)00084-6

    Article  CAS  PubMed  Google Scholar 

  17. Mangaloglu L, Cheung RC, Van Iderstine SC, Taghibiglou C, Pontrelli L, Adeli K (2002) Treatment with atorvastatin ameliorates hepatic very-low-density lipoprotein overproduction in an animal model of insulin resistance, the fructose-fed Syrian golden hamster: evidence that reduced hypertriglyceridemia is accompanied by improved hepatic insulin sensitivity. Metabolism 51(4):409–418. https://doi.org/10.1053/meta.2002.30954

    Article  CAS  PubMed  Google Scholar 

  18. Au CS, Wagner A, Chong T, Qiu W, Sparks JD, Adeli K (2004) Insulin regulates hepatic apolipoprotein B production independent of the mass or activity of Akt1/PKBalpha. Metabolism 53(2):228–235. https://doi.org/10.1016/j.metabol.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  19. Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, Austin RC, Adeli K (2005) Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation. Arterioscler Thromb Vasc Biol 25(3):571–577. https://doi.org/10.1161/01.Atv.0000154142.61859.94

    Article  CAS  PubMed  Google Scholar 

  20. Su Q, Tsai J, Xu E, Qiu W, Bereczki E, Santha M, Adeli K (2009) Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. Hepatology 50(1):77–84. https://doi.org/10.1002/hep.22960

    Article  CAS  PubMed  Google Scholar 

  21. Qiu W, Zhang J, Dekker MJ, Wang H, Huang J, Brumell JH, Adeli K (2011) Hepatic autophagy mediates endoplasmic reticulum stress-induced degradation of misfolded apolipoprotein B. Hepatology 53(5):1515–1525. https://doi.org/10.1002/hep.24269

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, Adeli K (2010) The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53(3):552–561. https://doi.org/10.1007/s00125-009-1611-5

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh J, Longuet C, Maida A, Bahrami J, Xu E, Baker CL, Brubaker PL, Drucker DJ, Adeli K (2009) Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137(3):997–1005, 1005.e1001-1004. https://doi.org/10.1053/j.gastro.2009.05.051

    Article  CAS  PubMed  Google Scholar 

  24. Hein GJ, Baker C, Hsieh J, Farr S, Adeli K (2013) GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62(2):373–381. https://doi.org/10.2337/db12-0202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taher J, Baker CL, Cuizon C, Masoudpour H, Zhang R, Farr S, Naples M, Bourdon C, Pausova Z, Adeli K (2014) GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol Metab 3(9):823–833. https://doi.org/10.1016/j.molmet.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsieh J, Trajcevski KE, Farr SL, Baker CL, Lake EJ, Taher J, Iqbal J, Hussain MM, Adeli K (2015) Glucagon-like peptide 2 (GLP-2) stimulates postprandial chylomicron production and postabsorptive release of intestinal triglyceride storage pools via induction of nitric oxide signaling in male hamsters and mice. Endocrinology 156(10):3538–3547. https://doi.org/10.1210/en.2015-1110

    Article  CAS  PubMed  Google Scholar 

  27. Farr S, Baker C, Naples M, Taher J, Iqbal J, Hussain M, Adeli K (2015) Central nervous system regulation of intestinal lipoprotein metabolism by glucagon-like peptide-1 via a brain-gut axis. Arterioscler Thromb Vasc Biol 35(5):1092–1100. https://doi.org/10.1161/atvbaha.114.304873

    Article  CAS  PubMed  Google Scholar 

  28. Castro-Perez J, Briand F, Gagen K, Wang SP, Chen Y, McLaren DG, Shah V, Vreeken RJ, Hankemeier T, Sulpice T, Roddy TP, Hubbard BK, Johns DG (2011) Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters. J Lipid Res 52(11):1965–1973. https://doi.org/10.1194/jlr.M016410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Briand F (2010) The use of dyslipidemic hamsters to evaluate drug-induced alterations in reverse cholesterol transport. Curr Opin Investig Drugs 11(3):289–297

    CAS  PubMed  Google Scholar 

  30. Fernandez ML, Wilson TA, Conde K, Vergara-Jimenez M, Nicolosi RJ (1999) Hamsters and guinea pigs differ in their plasma lipoprotein cholesterol distribution when fed diets varying in animal protein, soluble fiber, or cholesterol content. J Nutr 129(7):1323–1332. https://doi.org/10.1093/jn/129.7.1323

    Article  CAS  PubMed  Google Scholar 

  31. Liu GL, Fan LM, Redinger RN (1991) The association of hepatic apoprotein and lipid metabolism in hamsters and rats. Comp Biochem Physiol A Comp Physiol 99(1–2):223–228. https://doi.org/10.1016/0300-9629(91)90263-c

    Article  CAS  PubMed  Google Scholar 

  32. Spady DK, Dietschy JM (1985) Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proc Natl Acad Sci U S A 82(13):4526–4530. https://doi.org/10.1073/pnas.82.13.4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34(10):1637–1659

    Article  CAS  PubMed  Google Scholar 

  34. Sima A, Bulla A, Simionescu N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol 22(1):1–16

    CAS  PubMed  Google Scholar 

  35. Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R, Qiu W, Sacco J, Adeli K (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228(1):98–109. https://doi.org/10.1016/j.atherosclerosis.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  36. Dillard A, Matthan NR, Lichtenstein AH (2010) Use of hamster as a model to study diet-induced atherosclerosis. Nutr Metab (Lond) 7:89. https://doi.org/10.1186/1743-7075-7-89

    Article  CAS  Google Scholar 

  37. Cui X, Wang Y, Meng L, Fei W, Deng J, Xu G, Peng X, Ju S, Zhang L, Liu G, Zhao L, Yang H (2012) Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy. Am J Physiol Endocrinol Metab 302(6):E705–E713. https://doi.org/10.1152/ajpendo.00237.2011

    Article  CAS  PubMed  Google Scholar 

  38. Ding Y, Wang Y, Zhu H, Fan J, Yu L, Liu G, Liu E (2011) Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res 20(4):867–875. https://doi.org/10.1007/s11248-010-9467-5

    Article  CAS  PubMed  Google Scholar 

  39. Wu Y, Xu MJ, Cao Z, Yang C, Wang J, Wang B, Liu J, Wang Y, Xian X, Zhang F, Liu G, Chen X (2019) Heterozygous Ldlr-deficient mamster as a model to evaluate the efficacy of PCSK9 antibody in hyperlipidemia and atherosclerosis. Int J Mol Sci 20(23):5936. https://doi.org/10.3390/ijms20235936

    Article  CAS  PubMed Central  Google Scholar 

  40. Dong Z, Shi H, Zhao M, Zhang X, Huang W, Wang Y, Zheng L, Xian X, Liu G (2018) Loss of LCAT activity in the golden Syrian hamster elicits pro-atherogenic dyslipidemia and enhanced atherosclerosis. Metabolism 83:245–255. https://doi.org/10.1016/j.metabol.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Gao M, Yang C, Wang X, Guo M, Yang L, Gao S, Zhang X, Ruan G, Li X, Tian W, Lu G, Dong X, Ma S, Li W, Wang Y, Zhu H, He J, Yang H, Liu G, Xian X (2020) ApoC2 deficiency elicits severe hypertriglyceridemia and spontaneous atherosclerosis: a rodent model rescued from neonatal death. Metabolism 109:154296. https://doi.org/10.1016/j.metabol.2020.154296

    Article  CAS  PubMed  Google Scholar 

  42. Guo M, Xu Y, Dong Z, Zhou Z, Cong N, Gao M, Huang W, Wang Y, Liu G, Xian X (2020) Inactivation of ApoC3 by CRISPR/Cas9 protects against atherosclerosis in hamsters. Circ Res 127(11):1456–1458. https://doi.org/10.1161/circresaha.120.317686

    Article  CAS  PubMed  Google Scholar 

  43. Wei L, Shi H, Lin X, Zhang X, Wang Y, Liu G, Xian X (2019) Impact of cholesterol on ischemic stroke in different human-like hamster models: a new animal model for ischemic stroke study. Cell 8(9):1028. https://doi.org/10.3390/cells8091028

    Article  CAS  Google Scholar 

  44. Gao M, Zhang B, Liu J, Guo X, Li H, Wang T, Zhang Z, Liao J, Cong N, Wang Y, Yu L, Zhao D, Liu G (2014) Generation of transgenic golden Syrian hamsters. Cell Res 24(3):380–382. https://doi.org/10.1038/cr.2014.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjørklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG, Bentzon JF (2014) Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res 114(11):1684–1689. https://doi.org/10.1161/circresaha.114.302937

    Article  PubMed  Google Scholar 

  46. Herbert B, Patel D, Waddington SN, Eden ER, McAleenan A, Sun XM, Soutar AK (2010) Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol 30(7):1333–1339. https://doi.org/10.1161/atvbaha.110.204040

    Article  CAS  PubMed  Google Scholar 

  47. Seidah NG, Abifadel M, Prost S, Boileau C, Prat A (2017) The proprotein convertases in hypercholesterolemia and cardiovascular diseases: emphasis on proprotein convertase subtilisin/kexin 9. Pharmacol Rev 69(1):33–52. https://doi.org/10.1124/pr.116.012989

    Article  CAS  PubMed  Google Scholar 

  48. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156. https://doi.org/10.1038/ng1161

    Article  CAS  PubMed  Google Scholar 

  49. Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B, Bernal JA (2015) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 35(1):50–59. https://doi.org/10.1161/atvbaha.114.303617

    Article  CAS  PubMed  Google Scholar 

  50. Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459. https://doi.org/10.1534/genetics.110.117002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387. https://doi.org/10.1073/pnas.1211446109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fan Z, Li W, Lee SR, Meng Q, Shi B, Bunch TD, White KL, Kong IK, Wang Z (2014) Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One 9(10):e109755. https://doi.org/10.1371/journal.pone.0109755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jangra RK, Herbert AS, Li R, Jae LT, Kleinfelter LM, Slough MM, Barker SL, Guardado-Calvo P, Román-Sosa G, Dieterle ME, Kuehne AI, Muena NA, Wirchnianski AS, Nyakatura EK, Fels JM, Ng M, Mittler E, Pan J, Bharrhan S, Wec AZ, Lai JR, Sidhu SS, Tischler ND, Rey FA, Moffat J, Brummelkamp TR, Wang Z, Dye JM, Chandran K (2018) Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 563(7732):559–563. https://doi.org/10.1038/s41586-018-0702-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miao J, Ying B, Li R, Tollefson AE, Spencer JF, Wold WSM, Song SH, Kong IK, Toth K, Wang Y, Wang Z (2018) Characterization of an N-terminal non-core domain of RAG1 gene disrupted Syrian hamster model generated by CRISPR Cas9. Viruses 10(5):243. https://doi.org/10.3390/v10050243

    Article  CAS  PubMed Central  Google Scholar 

  56. Li R, Miao J, Tabaran AF, O'Sullivan MG, Anderson KJ, Scott PM, Wang Z, Cormier RT (2018) A novel cancer syndrome caused by KCNQ1-deficiency in the golden Syrian hamster. J Carcinog 17:6. https://doi.org/10.4103/jcar.JCar_5_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brocato RL, Principe LM, Kim RK, Zeng X, Williams JA, Liu Y, Li R, Smith JM, Golden JW, Gangemi D, Youssef S, Wang Z, Glanville J, Hooper JW (2020) Disruption of adaptive immunity enhances disease in SARS-CoV-2-infected Syrian hamsters. J Virol 94(22):e01683-20. https://doi.org/10.1128/jvi.01683-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS (2017) Familial hypercholesterolaemia. Nat Rev Dis Primers 3:17093. https://doi.org/10.1038/nrdp.2017.93

    Article  PubMed  Google Scholar 

  59. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG (2012) Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab 97(11):3956–3964. https://doi.org/10.1210/jc.2012-1563

    Article  CAS  PubMed  Google Scholar 

  60. Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS (2015) The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132(22):2167–2192. https://doi.org/10.1161/cir.0000000000000297

    Article  PubMed  Google Scholar 

  61. Singh S, Bittner V (2015) Familial hypercholesterolemia--epidemiology, diagnosis, and screening. Curr Atheroscler Rep 17(2):482. https://doi.org/10.1007/s11883-014-0482-5

    Article  CAS  PubMed  Google Scholar 

  62. Powell-Braxton L, Véniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO (1998) A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 4(8):934–938. https://doi.org/10.1038/nm0898-934

    Article  CAS  PubMed  Google Scholar 

  63. Sithu SD, Malovichko MV, Riggs KA, Wickramasinghe NS, Winner MG, Agarwal A, Hamed-Berair RE, Kalani A, Riggs DW, Bhatnagar A, Srivastava S (2017) Atherogenesis and metabolic dysregulation in LDL receptor-knockout rats. JCI Insight 2(9):e86442. https://doi.org/10.1172/jci.insight.86442

    Article  PubMed Central  Google Scholar 

  64. Shiomi M (2020) The history of the WHHL rabbit, an animal model of familial hypercholesterolemia (II) - contribution to the development and validation of the therapeutics for hypercholesterolemia and atherosclerosis. J Atheroscler Thromb 27(2):119–131. https://doi.org/10.5551/jat.RV17038-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kassim SH, Li H, Vandenberghe LH, Hinderer C, Bell P, Marchadier D, Wilson A, Cromley D, Redon V, Yu H, Wilson JM, Rader DJ (2010) Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One 5(10):e13424. https://doi.org/10.1371/journal.pone.0013424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Russell JC, Proctor SD (2006) Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 15(6):318–330. https://doi.org/10.1016/j.carpath.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  67. Rizzo M, Taylor JM, Barbagallo CM, Berneis K, Blanche PJ, Krauss RM (2004) Effects on lipoprotein subclasses of combined expression of human hepatic lipase and human apoB in transgenic rabbits. Arterioscler Thromb Vasc Biol 24(1):141–146. https://doi.org/10.1161/01.ATV.0000107027.73816.ce

    Article  CAS  PubMed  Google Scholar 

  68. Guo X, Gao M, Wang Y, Lin X, Yang L, Cong N, An X, Wang F, Qu K, Yu L, Wang Y, Wang J, Zhu H, Xian X, Liu G (2018) LDL receptor gene-ablated hamsters: a rodent model of familial hypercholesterolemia with dominant inheritance and diet-induced coronary atherosclerosis. EBioMedicine 27:214–224. https://doi.org/10.1016/j.ebiom.2017.12.013

    Article  PubMed  Google Scholar 

  69. He K, Wang J, Shi H, Yu Q, Zhang X, Guo M, Sun H, Lin X, Wu Y, Wang L, Wang Y, Xian X, Liu G (2019) An interspecies study of lipid profiles and atherosclerosis in familial hypercholesterolemia animal models with low-density lipoprotein receptor deficiency. Am J Transl Res 11(5):3116–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang J, He K, Yang C, Lin X, Zhang X, Wang Y, Liu G, Xian X (2019) Dietary cholesterol is highly associated with severity of hyperlipidemia and atherosclerotic lesions in heterozygous LDLR-deficient hamsters. Int J Mol Sci 20(14):3515. https://doi.org/10.3390/ijms20143515

    Article  CAS  PubMed Central  Google Scholar 

  71. Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21(4):225–245. https://doi.org/10.1038/s41580-019-0190-7

    Article  CAS  PubMed  Google Scholar 

  72. Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32(2):71–77. https://doi.org/10.1016/j.tibs.2006.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165. https://doi.org/10.1038/ng1509

    Article  CAS  PubMed  Google Scholar 

  74. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272. https://doi.org/10.1056/NEJMoa054013

    Article  CAS  PubMed  Google Scholar 

  75. Hyttinen L, TuulioHenriksson A, Vuorio AF, Kuosmanen N, Härkänen T, Koskinen S, Strandberg TE (2010) Long-term statin therapy is associated with better episodic memory in aged familial hypercholesterolemia patients in comparison with population controls. J Alzheimers Dis 21(2):611–617. https://doi.org/10.3233/jad-2010-091381

    Article  CAS  PubMed  Google Scholar 

  76. van de Haar HJ, Burgmans S, Hofman PA, Verhey FR, Jansen JF, Backes WH (2015) Blood-brain barrier impairment in dementia: current and future in vivo assessments. Neurosci Biobehav Rev 49:71–81. https://doi.org/10.1016/j.neubiorev.2014.11.022

    Article  CAS  PubMed  Google Scholar 

  77. Schreurs MP, Cipolla MJ (2014) Cerebrovascular dysfunction and blood-brain barrier permeability induced by oxidized LDL are prevented by apocynin and magnesium sulfate in female rats. J Cardiovasc Pharmacol 63(1):33–39. https://doi.org/10.1097/fjc.0000000000000021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gu YY, Huang P, Li Q, Liu YY, Liu G, Wang YH, Yi M, Yan L, Wei XH, Yang L, Hu BH, Zhao XR, Chang X, Sun K, Pan CS, Cui YC, Chen QF, Wang CS, Fan JY, Ma ZZ, Han JY (2018) YangXue QingNao Wan and Silibinin capsules, the two chinese medicines, attenuate cognitive impairment in aged LDLR (+/−) golden Syrian hamsters involving protection of blood brain barrier. Front Physiol 9:658. https://doi.org/10.3389/fphys.2018.00658

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kunnen S, Van Eck M (2012) Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 53(9):1783–1799. https://doi.org/10.1194/jlr.R024513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, Calabresi L (2007) Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res 48(3):592–599. https://doi.org/10.1194/jlr.M600403-JLR200

    Article  CAS  PubMed  Google Scholar 

  81. Pavanello C, Calabresi L (2020) Genetic, biochemical, and clinical features of LCAT deficiency: update for 2020. Curr Opin Lipidol 31(4):232–237. https://doi.org/10.1097/mol.0000000000000697

    Article  CAS  PubMed  Google Scholar 

  82. Oldoni F, Baldassarre D, Castelnuovo S, Ossoli A, Amato M, van Capelleveen J, Hovingh GK, De Groot E, Bochem A, Simonelli S, Barbieri S, Veglia F, Franceschini G, Kuivenhoven JA, Holleboom AG, Calabresi L (2018) Complete and partial lecithin:cholesterol acyltransferase deficiency is differentially associated with atherosclerosis. Circulation 138(10):1000–1007. https://doi.org/10.1161/circulationaha.118.034706

    Article  CAS  PubMed  Google Scholar 

  83. Guo M, Liu Z, Xu Y, Ma P, Huang W, Gao M, Wang Y, Liu G, Xian X (2020) Spontaneous atherosclerosis in aged LCAT-deficient hamsters with enhanced oxidative stress-brief report. Arterioscler Thromb Vasc Biol 40(12):2829–2836. https://doi.org/10.1161/atvbaha.120.315265

    Article  CAS  PubMed  Google Scholar 

  84. Rousset X, Shamburek R, Vaisman B, Amar M, Remaley AT (2011) Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr Atheroscler Rep 13(3):249–256. https://doi.org/10.1007/s11883-011-0171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Furbee JW Jr, Sawyer JK, Parks JS (2002) Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 277(5):3511–3519. https://doi.org/10.1074/jbc.M109883200

    Article  CAS  PubMed  Google Scholar 

  86. Ng DS, Maguire GF, Wylie J, Ravandi A, Xuan W, Ahmed Z, Eskandarian M, Kuksis A, Connelly PW (2002) Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem 277(14):11715–11720. https://doi.org/10.1074/jbc.M112320200

    Article  CAS  PubMed  Google Scholar 

  87. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278. https://doi.org/10.1016/s0140-6736(05)67394-1

    Article  CAS  PubMed  Google Scholar 

  88. Lake NJ, Taylor RL, Trahair H, Harikrishnan KN, Curran JE, Almeida M, Kulkarni H, Mukhamedova N, Hoang A, Low H, Murphy AJ, Johnson MP, Dyer TD, Mahaney MC, Göring HHH, Moses EK, Sviridov D, Blangero J, Jowett JBM, Bozaoglu K (2017) TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. Eur Heart J 38(48):3579–3587. https://doi.org/10.1093/eurheartj/ehx315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oram JF, Lawn RM (2001) ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 42(8):1173–1179

    Article  CAS  PubMed  Google Scholar 

  90. Nagappa M, Taly AB, Mahadevan A, Pooja M, Bindu PS, Chickabasaviah YT, Gayathri N, Sinha S (2016) Tangier's disease: An uncommon cause of facial weakness and non-length dependent demyelinating neuropathy. Ann Indian Acad Neurol 19(1):137–139. https://doi.org/10.4103/0972-2327.175436

    Article  PubMed  PubMed Central  Google Scholar 

  91. Singaraja RR, Brunham LR, Visscher H, Kastelein JJ, Hayden MR (2003) Efflux and atherosclerosis: the clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler Thromb Vasc Biol 23(8):1322–1332. https://doi.org/10.1161/01.Atv.0000078520.89539.77

    Article  CAS  PubMed  Google Scholar 

  92. Li C, Guo R, Lou J, Zhou H (2012) The transcription levels of ABCA1, ABCG1 and SR-BI are negatively associated with plasma CRP in Chinese populations with various risk factors for atherosclerosis. Inflammation 35(5):1641–1648. https://doi.org/10.1007/s10753-012-9479-9

    Article  CAS  PubMed  Google Scholar 

  93. Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF (2009) The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem 284(47):32336–32343. https://doi.org/10.1074/jbc.M109.047472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Eck M, Bos IS, Kaminski WE, Orsó E, Rothe G, Twisk J, Böttcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, Van Berkel TJ, Schmitz G (2002) Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci U S A 99(9):6298–6303. https://doi.org/10.1073/pnas.092327399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2015) Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement 11(12):1430–1438. https://doi.org/10.1016/j.jalz.2015.04.006

    Article  PubMed  Google Scholar 

  96. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkan A, Den Hertog HM, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkilä K, Hyppönen E, Isaacs A, Jackson AU, Johansson A, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikäinen LP, Magnusson PK, Mangino M, Mihailov E, Montasser ME, Müller-Nurasyid M, Nolte IM, O'Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney AS, Döring A, Elliott P, Epstein SE, Eyjolfsson GI, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJ, Khaw KT, Kim E, Klopp N, Komulainen P, Kumari M, Langenberg C, Lehtimäki T, Lin SY, Lindström J, Loos RJ, Mach F, McArdle WL, Meisinger C, Mitchell BD, Müller G, Nagaraja R, Narisu N, Nieminen TV, Nsubuga RN, Olafsson I, Ong KK, Palotie A, Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, Rudan I, Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stančáková A, Stirrups K, Swift AJ, Tiret L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright N, Wijmenga C, Wild SH, Willemsen G, Wilsgaard T, Wilson JF, Young EH, Zhao JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, Chakravarti A, Chambers JC, Chen YD, Collins FS, Cooper RS, Danesh J, Dedoussis G, de Faire U, Feranil AB, Ferrières J, Ferrucci L, Freimer NB, Gieger C, Groop LC, Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren C, Järvelin MR, Jula A, Kähönen M, Kaprio J, Kesäniemi A, Kivimaki M, Kooner JS, Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, März W, McCarthy MI, McKenzie CA, Meneton P, Metspalu A, Moilanen L, Morris AD, Munroe PB, Njølstad I, Pedersen NL, Power C, Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, Salomaa V, Sanghera DK, Saramies J, Schwarz PE, Sheu WH, Shuldiner AR, Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitfield JB, Wolffenbuttel BH, Altshuler D, Ordovas JM, Boerwinkle E, Palmer CN, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehnke M, Deloukas P, Mohlke KL, Ingelsson E, Abecasis GR, Daly MJ, Neale BM, Kathiresan S (2013) Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 45(11):1345–1352. https://doi.org/10.1038/ng.2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT (2017) Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267:49–60. https://doi.org/10.1016/j.atherosclerosis.2017.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Merkel M, Eckel RH, Goldberg IJ (2002) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43(12):1997–2006. https://doi.org/10.1194/jlr.r200015-jlr200

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297(2):E271–E288. https://doi.org/10.1152/ajpendo.90920.2008

    Article  CAS  PubMed  Google Scholar 

  100. Ueda M, Dunbar RL, Wolska A, Sikora TU, Escobar MDR, Seliktar N, deGoma E, DerOhannessian S, Morrell L, McIntyre AD, Burke F, Sviridov D, Amar M, Shamburek RD, Freeman L, Hegele RA, Remaley AT, Rader DJ (2017) A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis. J Clin Endocrinol Metab 102(5):1454–1457. https://doi.org/10.1210/jc.2016-3903

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ewald N, Hardt PD, Kloer HU (2009) Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol 20(6):497–504. https://doi.org/10.1097/MOL.0b013e3283319a1d

    Article  CAS  PubMed  Google Scholar 

  102. Sakurai T, Sakurai A, Vaisman BL, Amar MJ, Liu C, Gordon SM, Drake SK, Pryor M, Sampson ML, Yang L, Freeman LA, Remaley AT (2016) Creation of apolipoprotein C-II (ApoC-II) mutant mice and correction of their hypertriglyceridemia with an ApoC-II mimetic peptide. J Pharmacol Exp Ther 356(2):341–353. https://doi.org/10.1124/jpet.115.229740

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu C, Gates KP, Fang L, Amar MJ, Schneider DA, Geng H, Huang W, Kim J, Pattison J, Zhang J, Witztum JL, Remaley AT, Dong PD, Miller YI (2015) Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. Dis Model Mech 8(8):989–998. https://doi.org/10.1242/dmm.019836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao X, Li J, Tsao YP, Dressman D, Hoffman EP, Watchko JF (2000) Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 74(3):1436–1442. https://doi.org/10.1128/jvi.74.3.1436-1442.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He B, Tang RH, Weisleder N, Xiao B, Yuan Z, Cai C, Zhu H, Lin P, Qiao C, Li J, Mayer C, Li J, Ma J, Xiao X (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in δ-Sarcoglycan-deficient hamsters. Mol Ther 20(4):727–735. https://doi.org/10.1038/mt.2012.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang C, Tian W, Ma S, Guo M, Lin X, Gao F, Dong X, Gao M, Wang Y, Liu G, Xian X (2020) AAV-mediated ApoC2 gene therapy: reversal of severe hypertriglyceridemia and rescue of neonatal death in ApoC2-deficient hamsters. Mol Ther Methods Clin Dev 18:692–701. https://doi.org/10.1016/j.omtm.2020.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46(2):375–382. https://doi.org/10.1016/s0006-291x(72)80149-9

    Article  CAS  PubMed  Google Scholar 

  108. Ramms B, Patel S, Nora C, Pessentheiner AR, Chang MW, Green CR, Golden GJ, Secrest P, Krauss RM, Metallo CM, Benner C, Alexander VJ, Witztum JL, Tsimikas S, Esko JD, Gordts P (2019) ApoC-III ASO promotes tissue LPL activity in the absence of apoE-mediated TRL clearance. J Lipid Res 60(8):1379–1395. https://doi.org/10.1194/jlr.M093740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mann CJ, Khallou J, Chevreuil O, Troussard AA, Guermani LM, Launay K, Delplanque B, Yen FT, Bihain BE (1995) Mechanism of activation and functional significance of the lipolysis-stimulated receptor. Evidence for a role as chylomicron remnant receptor. Biochemistry 34(33):10421–10431. https://doi.org/10.1021/bi00033a014

    Article  CAS  PubMed  Google Scholar 

  110. Agnani G, Bard JM, Candelier L, Delattre S, Fruchart JC, Clavey V (1991) Interaction of LpB, LpB:E, LpB:C-III, and LpB:C-III:E lipoproteins with the low density lipoprotein receptor of HeLa cells. Arterioscler Thromb 11(4):1021–1029. https://doi.org/10.1161/01.atv.11.4.1021

    Article  CAS  PubMed  Google Scholar 

  111. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, Hindy G, Masca N, Stirrups K, Kanoni S, Do R, Jun G, Hu Y, Kang HM, Xue C, Goel A, Farrall M, Duga S, Merlini PA, Asselta R, Girelli D, Olivieri O, Martinelli N, Yin W, Reilly D, Speliotes E, Fox CS, Hveem K, Holmen OL, Nikpay M, Farlow DN, Assimes TL, Franceschini N, Robinson J, North KE, Martin LW, DePristo M, Gupta N, Escher SA, Jansson JH, Van Zuydam N, Palmer CN, Wareham N, Koch W, Meitinger T, Peters A, Lieb W, Erbel R, Konig IR, Kruppa J, Degenhardt F, Gottesman O, Bottinger EP, O'Donnell CJ, Psaty BM, Ballantyne CM, Abecasis G, Ordovas JM, Melander O, Watkins H, Orho-Melander M, Ardissino D, Loos RJ, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Deloukas P, Schunkert H, Wilson JG, Kooperberg C, Rich SS, Tracy RP, Lin DY, Altshuler D, Gabriel S, Nickerson DA, Jarvik GP, Cupples LA, Reiner AP, Boerwinkle E, Kathiresan S (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371(1):22–31. https://doi.org/10.1056/NEJMoa1307095

    Article  CAS  PubMed  Google Scholar 

  112. Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC (1995) Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol 15(7):963–971. https://doi.org/10.1161/01.atv.15.7.963

    Article  CAS  PubMed  Google Scholar 

  113. Crawford DC, Dumitrescu L, Goodloe R, Brown-Gentry K, Boston J, McClellan B Jr, Sutcliffe C, Wiseman R, Baker P, Pericak-Vance MA, Scott WK, Allen M, Mayo P, Schnetz-Boutaud N, Dilks HH, Haines JL, Pollin TI (2014) Rare variant APOC3 R19X is associated with cardio-protective profiles in a diverse population-based survey as part of the epidemiologic architecture for genes linked to environment study. Circ Cardiovasc Genet 7(6):848–853. https://doi.org/10.1161/circgenetics.113.000369

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A (2014) Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 371(1):32–41. https://doi.org/10.1056/NEJMoa1308027

    Article  CAS  PubMed  Google Scholar 

  115. Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, Won HH, Karczewski KJ, O'Donnell-Luria AH, Samocha KE, Weisburd B, Gupta N, Zaidi M, Samuel M, Imran A, Abbas S, Majeed F, Ishaq M, Akhtar S, Trindade K, Mucksavage M, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Hayyat Mallick N, Ishaq M, Rasheed SZ, Memon FU, Mahmood K, Ahmed N, Do R, Krauss RM, MacArthur DG, Gabriel S, Lander ES, Daly MJ, Frossard P, Danesh J, Rader DJ, Kathiresan S (2017) Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544(7649):235–239. https://doi.org/10.1038/nature22034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wulff AB, Nordestgaard BG, Tybjærg-Hansen A (2018) APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol 38(3):660–668. https://doi.org/10.1161/atvbaha.117.310473

    Article  CAS  PubMed  Google Scholar 

  117. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J (1994) Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 269(38):23610–23616

    Article  CAS  PubMed  Google Scholar 

  118. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O'Connell JR, Shuldiner AR (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908):1702–1705. https://doi.org/10.1126/science.1161524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM (2006) Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114(7):681–687. https://doi.org/10.1161/circulationaha.106.622514

    Article  CAS  PubMed  Google Scholar 

  120. Li H, Han Y, Qi R, Wang Y, Zhang X, Yu M, Tang Y, Wang M, Shu YN, Huang W, Liu X, Rodrigues B, Han M, Liu G (2015) Aggravated restenosis and atherogenesis in ApoCIII transgenic mice but lack of protection in ApoCIII knockouts: the effect of authentic triglyceride-rich lipoproteins with and without ApoCIII. Cardiovasc Res 107(4):579–589. https://doi.org/10.1093/cvr/cvv192

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yitong Xu, Pingping Lai, Haozhe Shi, Jiaobao Guo, Gonglie Chen, and Lili Wei for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xian, X., Wang, Y., Liu, G. (2022). Genetically Engineered Hamster Models of Dyslipidemia and Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics