Skip to main content
Log in

Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Apolipoprotein CIII (apoCIII) has been implicated in hypertriglyceridemia and plasma apoCIII independently predicts risk for coronary heart disease. While hypertriglyceridemia in patients has been demonstrated to correlate with elevated plasma apoCIII levels and reduced lipoprotein lipase (LPL) activity, apoCIII transgenic mice show elevated LPL activity. In this study, we generated transgenic (Tg) rabbits expressing human apoCIII gene exclusively in liver and investigated the effect of apoCIII overexpression on lipid metabolism of rabbits. In comparison with non-Tg littermates, Tg rabbits had 3- and 3.2-fold increases in fed and fasted plasma triglycerides, respectively. In contrast, no significant differences were observed in plasma total cholesterol and high density lipoprotein cholesterol levels between Tg and non-Tg rabbits. Analysis of lipoprotein fractions revealed that elevated plasma triglyceride levels in Tg rabbits were mainly attributed to an increase in very low density lipoprotein/chylomicron-sized particles. Furthermore, Tg rabbits showed markedly delayed clearance of plasma triglycerides accompanied with significantly reduced LPL activity in post-heparin plasma compared to that in non-Tg controls. In conclusion, these results indicate apoCIII transgenic rabbits develop hypertriglyceridemia with similar mechanism in hypertriglyceridemic patients via delayed clearance of plasma triglycerides, and could be used as a valuable tool for the study of human hyperlipidemia in relation with atherosclerotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aalto-Setala K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R, Walsh A, Ramakrishnan R, Ginsberg HN, Breslow JL (1992) Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 90(5):1889–1900

    Google Scholar 

  • Bobik A (2008) Apolipoprotein CIII and atherosclerosis: beyond effects on lipid metabolism. Circulation 118:702–704

    Article  PubMed  Google Scholar 

  • Brewer HB Jr, Shulman R, Herbert P, Ronan R, Wehrly K (1974) The complete amino acid sequence of alanine apolipoprotein (apoC-3), and apolipoprotein from human plasma very low density lipoproteins. J Biol Chem 249(15):4975–4984

    PubMed  CAS  Google Scholar 

  • Brousseau ME, Kauffman RD, Herderick EE, Demosky SJ Jr, Evans W, Marcovina S, Santamarina-Fojo S, Brewer HB Jr, Hoeg JM (2000) LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits. Arterioscler Thromb Vasc Biol 20:450–458

    Article  PubMed  CAS  Google Scholar 

  • Cohn JS, Tremblay M, Batal R, Jacques H, Rodriguez C, Steiner G, Mamer O, Davignon J (2004a) Increased apoC-III production is a characteristic feature of patients with hypertriglyceridemia. Atherosclerosis 177(1):137–145

    Article  PubMed  CAS  Google Scholar 

  • Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G (2004b) Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 89(8):3949–3955

    Article  PubMed  CAS  Google Scholar 

  • Couillard C, Vohl MC, Engert JC, Lemieux I, Houde A, Almeras N, Prud’homme D, Nadeau A, Despres JP, Bergeron J (2003) Effect of apoC-III gene polymorphisms on the lipoprotein-lipid profile of viscerally obese men. J Lipid Res 44(5):986–993

    Article  PubMed  CAS  Google Scholar 

  • de Silva HV, Lauer SJ, Wang J, Simonet WS, Weisgraber KH, Mahley RW, Taylor JM (1994) Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 269(3):2324–2335

    PubMed  Google Scholar 

  • Duivenvoorden I, Teusink B, Rensen PC, Romijn JA, Havekes LM, Voshol PJ (2005) Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 54(3):664–671

    Article  PubMed  CAS  Google Scholar 

  • Ebara T, Ramakrishnan R, Steiner G, Shachter NS (1997) Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E. J Clin Invest 99(11):2672–2681

    Article  PubMed  CAS  Google Scholar 

  • Falko JM, Witztum JL, Schonfeld G, Bateman J (1979) Dietary treatment of type V hyperlipoproteinemia fails to normalize low levels of high-density lipoprotein cholesterol. Ann Intern Med 91(5):750–751

    PubMed  CAS  Google Scholar 

  • Fan J, Challah M, Watanabe T (1999) Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol Int 49(7):583–594

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K, Watanabe T (2001) Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol 21:88–94

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, Norum R, Brown WV (1986) Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 78(5):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Hayek T, Azrolan N, Verdery RB, Walsh A, Chajek-Shaul T, Agellon LB, Tall AR, Breslow JL (1993) Hypertriglyceridemia and cholesteryl ester transfer protein interact to dramatically alter high density lipoprotein levels, particle sizes, and metabolism. Studies in transgenic mice. J Clin Invest 92(3):1143–1152

    Google Scholar 

  • Huang W, Bi N, Zhang X, Wang Y, Chen B, Liu G (2006) Overexpression of apolipoprotein AV in the liver reduces plasma triglyceride and cholesterol but not HDL in ApoE deficient mice. Biochem Biophys Res Commun 346(1):14–18

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970):790–793

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Yoshida M (2009) Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb 16(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM (2006a) Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114(7):681–687

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM (2006b) Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 113(5):691–700

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Osaka M, Tani M, Azuma H, Sacks FM, Shimokado K, Yoshida M (2008) Apolipoprotein CIII links hyperlipidemia with vascular endothelial cell dysfunction. Circulation 118(7):731–742

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen PK, Ehnolm C (1976) Effect of serum and C-apoproteins from very low density lipoproteins on human postheparin plasma hepatic lipase. FEBS Lett 65(3):354–357

    Article  PubMed  CAS  Google Scholar 

  • Kitajima S, Jin Y, Koike T, Yu Y, Liu E, Shiomi M, Marcovina SM, Morimoto M, Watanabe T, Fan J (2007) Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 193:269–276

    Article  PubMed  CAS  Google Scholar 

  • Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Sun H, Watanabe T, Liu G, Fan J (2005) Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase. Cardiovasc Res 65:524–534

    Article  PubMed  CAS  Google Scholar 

  • Koike T, Kitajima S, Yu Y, Li Y, Nishijima K, Liu E, Sun H, Waqar AB, Shibata N, Inoue T, Wang Y, Zhang B, Kobayashi J, Morimoto M, Saku K, Watanabe T, Fan J (2009a) Expression of human apoAII in transgenic rabbits leads to dyslipidemia: a new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol 29(12):2047–2053

    Article  PubMed  CAS  Google Scholar 

  • Koike T, Kitajima S, Yu Y, Nishijima K, Zhang J, Ozaki Y, Morimoto M, Watanabe T, Bhakdi S, Asada Y, Chen YE, Fan J (2009b) Human C-reactive protein does not promote atherosclerosis in transgenic rabbits. Circulation 120:2088–2094

    Article  PubMed  CAS  Google Scholar 

  • Lenich C, Brecher P, Makrides S, Chobanian A, Zannis VI (1988) Apolipoprotein gene expression in the rabbit: abundance, size, and distribution of apolipoprotein mRNA species in different tissues. J Lipid Res 29(6):755–764

    PubMed  CAS  Google Scholar 

  • McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC, Wang CS (1992) Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res 33(7):995–1003

    PubMed  CAS  Google Scholar 

  • Ooi EM, Barrett PH, Chan DC, Watts GF (2008) Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 114(10):611–624

    Article  CAS  Google Scholar 

  • Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O’Connell JR, Shuldiner AR (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908):1702–1705

    Article  PubMed  CAS  Google Scholar 

  • Recalde D, Baroukh N, Viglietta C, Prince S, Verona J, Vergnes L, Pidoux J, Nanjee MN, Brites F, Ochoa A, Castro G, Zakin MM, Miller NE, Houdebine LM (2004) Human apoA-I/C-III/A-IV gene cluster transgenic rabbits: effects of a high-cholesterol diet. FEBS Letters 572:294–298

    Article  PubMed  CAS  Google Scholar 

  • Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD, West AG, Gaszner M, Felsenfeld G (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 99(10):6883–6888

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Sich D, Camproux A, Egloff M, Federspiel MC, Gautier V, Raisonnier A, Turpin G, Beucler I (1999) Interrelationships between postprandial lipoprotein B:CIII particle changes and high-density lipoprotein subpopulation profiles in mixed hyperlipoproteinemia. Metabolism 48(1):60–67

    Article  PubMed  CAS  Google Scholar 

  • Salerno AG, Silva TR, Amaral ME, Alberici LC, Bonfleur ML, Patrício PR, Francesconi EP, Grassi-Kassisse DM, Vercesi AE, Boschero AC, Oliveira HC (2007) Overexpression of apolipoprotein CIII increases and CETP reverses diet-induced obesity in transgenic mice. Int J Obes (Lond) 31(10):1586–1595

    Article  CAS  Google Scholar 

  • Van Eck M, Zimmermann R, Groot PH, Zechner R, Van Berkel TJ (2000) Role of macrophage-derived lipoprotein lipase in lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 20(9):E53–E62

    Article  PubMed  Google Scholar 

  • Vergnes L, Baroukh N, Ostos MA, Castro G, Duverger N, Nanjee MN, Najib J, Fruchart JC, Miller NE, Zakin MM, Ochoa A (2000) Induces hyperlipidemia but reduces atherogenesis expression of human apolipoprotein A-I/C-III/A-IV gene cluster in mice. Arterioscler Thromb Vasc Biol 20:2267–2274

    Article  PubMed  CAS  Google Scholar 

  • Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75(2):384–390

    Article  PubMed  CAS  Google Scholar 

  • Witztum JL, Dillingham MA, Giese W, Bateman J, Diekman C, Blaufuss EK, Weidman S, Schonfeld G (1980) Normalization on triglycerides in type IV hyperlipoproteinemia fails to correct low levels of high-density-lipoprotein cholesterol. N Engl J Med 303(16):907–914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National High Technology R&D Program of China (863 Program No. 2006AA02Z119), National Natural Science Foundation of the People’s Republic of China (No. 30821001), Major National Basic Research Program of the People’s Republic of China (No. G2006CD503801) and Beijing Natural Science Foundation (No. 5101004) to G. Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Liu or Enqi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Wang, Y., Zhu, H. et al. Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res 20, 867–875 (2011). https://doi.org/10.1007/s11248-010-9467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9467-5

Keywords

Navigation