Skip to main content

Isolation and Identification of Dengue Virus Interactome with Human Plasma Proteins by Affinity Purification-Mass Spectrometry

  • Protocol
  • First Online:
Dengue Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2409))

Abstract

Viral proteins evolve to benefit the interaction with host proteins during the infection and replication processes. A comprehensive understanding of virus interactome with host proteins may thus lead to the identification of molecular targets for infection inhibition. We present a procedure for isolating and identifying the dengue virus interactome with human plasma proteins. It comprises the fractionation of human plasma by anion exchange chromatography, followed by affinity purification and mass spectrometry identification of the captured proteins. This procedure was applied to the characterization of the interactions of the four serotypes of dengue virus with human plasma proteins, mediated by the domain III of the envelope protein of the virus. The resulting interactome comprises 62 proteins, six of which were validated as new direct interactions of the virus with its human host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Chassey B, Meyniel-Schicklin L, Vonderscher J et al (2014) Virus-host interactomics: new insights and opportunities for antiviral drug discovery. Genome Med 6(11):115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Epperson ML, Lee CA, Fremont DH (2012) Subversion of cytokine networks by virally encoded decoy receptors. Immunol Rev 250(1):199–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Agrawal P, Nawadkar R, Ojha H et al (2017) Complement evasion strategies of viruses: an overview. Front Microbiol 9:1117. https://doi.org/10.3389/fmicb.2017.01117

    Article  Google Scholar 

  4. Green AM, Beatty PR, Hadjilaou A et al (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426(6):1148–1160

    Article  CAS  PubMed  Google Scholar 

  5. Meertens L, Carnec X, Lecoin MP et al (2012) The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12(4):544–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Kakinami C, Li Q et al (2013) Human apolipoprotein A-I is associated with dengue virus and enhances virus infection through SR-BI. PLoS One 8(7):e70390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhattacharyya S, Zagórska A, Lew ED et al (2013) Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14(2):136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Modhiran N, Watterson D, Muller DA et al (2015) Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7(304):304ra142

    Article  PubMed  CAS  Google Scholar 

  9. Beatty PR, Puerta-Guardo H, Killingbeck SS et al (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7(304):304ra141

    Article  PubMed  CAS  Google Scholar 

  10. Puerta-Guardo H, Glasner DR, Harris E (2016) Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog 12:e1005738. https://doi.org/10.1371/journal.ppat.1005738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gordon DE, Jang GM, Bouhaddou M et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:459. https://doi.org/10.1038/s41586-020-2286-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amemiya T, Gromiha MM, Horimoto K et al (2019) Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses. Sci Rep 9(1):523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bhattacharjee S (2015) Recent advances in host–virus interactomics during entry and infection. Virus Adapt Treat 7:57

    Article  CAS  Google Scholar 

  14. Chiu M-W, Shih H-M, Yang T-H et al (2007) The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). J Biomed Sci 14(3):429–444

    Article  CAS  PubMed  Google Scholar 

  15. Folly BB, Weffort-Santos AM, Fathman CG et al (2011) Dengue-2 structural proteins associate with human proteins to produce a coagulation and innate immune response biased interactome. BMC Infect Dis 11(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jitoboam K, Phaonakrop N, Libsittikul S et al (2016) Actin interacts with dengue virus 2 and 4 envelope proteins. PLoS One 11(3):e0151951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Khadka S, Vangeloff AD, Zhang C et al (2011) A physical interaction network of dengue virus and human proteins. Mol Cell Proteom 10:M111.012187. https://doi.org/10.1074/mcp.M111.012187

    Article  CAS  Google Scholar 

  18. Limjindaporn T, Wongwiwat W, Noisakran S et al (2009) Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem Biophys Res Commun 379(2):196–200

    Article  CAS  PubMed  Google Scholar 

  19. Mairiang D, Zhang H, Sodja A et al (2013) Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8(1):e53535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lai J-H, Lin Y-L, Hsieh S-L (2017) Pharmacological intervention for dengue virus infection. Biochem Pharmacol 129:14–25

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen NM, Tran CNB, Phung LK et al (2013) A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis 207(9):1442–1450

    Article  CAS  PubMed  Google Scholar 

  22. Low JG, Sung C, Wijaya L et al (2014) Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis 14(8):706–715

    Article  CAS  PubMed  Google Scholar 

  23. Luck K, Sheynkman GM, Zhang I et al (2017) Proteome-scale human interactomics. Trends Biochem Sci 42(5):342–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivanov AS, Zgoda VG, Archakov AI (2011) Technologies of protein interactomics: a review. Russ J Bioorganic Chem 37(1):4–16

    Article  CAS  Google Scholar 

  25. Guzman MG, Harris E (2015) Dengue. Lancet 385(9966):453–465

    Article  PubMed  Google Scholar 

  26. Rico-Hesse R (2010) Dengue virus virulence and transmission determinants. Curr Top Microbiol Immunol 338:45–55

    CAS  PubMed  Google Scholar 

  27. Yung C-F, Lee K-S, Thein T-L et al (2015) Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. Am J Trop Med Hyg 92(5):999–1005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fried JR, Gibbons RV, Kalayanarooj S et al (2010) Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 4:e617. https://doi.org/10.1371/journal.pntd.0000617

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vicente CR, Herbinger K-H, Fröschl G et al (2016) Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infect Dis 16(1):320

    Article  PubMed  PubMed Central  Google Scholar 

  30. Balmaseda A, Hammond SN, Pérez L et al (2006) Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74(3):449–456

    Article  PubMed  Google Scholar 

  31. Khan AM, Miotto O, Nascimento EJM et al (2008) Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl Trop Dis 2:e272. https://doi.org/10.1371/journal.pntd.0000272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen H-R, Lai Y-C, Yeh T-M (2018) Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 25(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Noisakran S, Onlamoon N, Songprakhon P et al (2010) Cells in dengue virus infection in vivo. Adv Virol 2010:1–15

    Article  Google Scholar 

  34. Li H (2015) Radiology of infectious diseases, vol 1. Springer, New York, NY

    Google Scholar 

  35. Vaughn DW, Green S, Kalayanarooj S et al (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181(1):2–9

    Article  CAS  PubMed  Google Scholar 

  36. Tricou V, Minh NN, Farrar J et al (2011) Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. PLoS Negl Trop Dis 5(9):e1309

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moi ML, Lim C-K, Takasaki T et al (2010) Involvement of the Fc receptor IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. J Gen Virol 91(1):103–111

    Article  CAS  PubMed  Google Scholar 

  38. Huerta V, Toledo P, Fleitas N et al (2014) Receptor-activated human α2-macroglobulin interacts with the envelope protein of dengue virus and protects virions from temperature-induced inactivation through multivalent binding. J Gen Virol 95(Pt 12):2668–2676

    Article  CAS  PubMed  Google Scholar 

  39. Ramos Y, Huerta V, Martín D et al (2019) An “on-matrix” digestion procedure for AP-MS experiments dissects the interplay between complex-conserved and serotype-specific reactivities in Dengue virus-human plasma interactome. J Proteome 193:71–84

    Article  CAS  Google Scholar 

  40. Hortin GL, Sviridov D, Anderson NL (2008) High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 54(10):1608–1616

    Article  CAS  PubMed  Google Scholar 

  41. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5(13):3226–3245

    Article  CAS  PubMed  Google Scholar 

  42. Gbormittah FO, Hincapie M, Hancock WS (2014) Development of an improved fractionation of the human plasma proteome by a combination of abundant proteins depletion and multi-lectin affinity chromatography. Bioanalysis 6(19):2537–2548

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, Herrmann CJ, Simonovic M et al (2015) Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15(18):3163–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pundir S, Martin MJ, O’Donovan C (2017) UniProt protein knowledgebase. Methods Mol Biol 1558:41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peralta R et al. (2020) Hypoalbuminemia: background, pathophysiology, etiology

    Google Scholar 

  46. Danforth CM, Orfeo T, Everse SJ et al (2012) Defining the boundaries of normal thrombin generation: investigations into hemostasis. PLoS One 7:e30385. https://doi.org/10.1371/journal.pone.0030385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huerta V, Ramos Y, Yero A et al (2016) Dataset on protein composition of a human plasma sub-proteome able to modulate the Dengue 2 virus infection in Huh 7.5 cells. Data Brief 6:352–358

    Article  PubMed  Google Scholar 

  48. Huerta V, Ramos Y, Yero A et al (2016) Novel interactions of domain III from the envelope glycoprotein of dengue 2 virus with human plasma proteins. J Proteome 131:205–213

    Article  CAS  Google Scholar 

  49. Miteva YV, Budayeva HG, Cristea IM (2013) Proteomics-based methods for discovery, quantification, and validation of protein–protein interactions. Anal Chem 85(2):749–768

    Article  CAS  PubMed  Google Scholar 

  50. Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meysman P, Titeca K, Eyckerman S et al (2017) Protein complex analysis: from raw protein lists to protein interaction networks. Mass Spectrom Rev 36(5):600–614

    Article  CAS  PubMed  Google Scholar 

  52. Gomez Y, Gallien S, Huerta V et al (2014) Characterization of protein complexes using targeted proteomics. Curr Top Med Chem 14(3):344–350

    Article  CAS  PubMed  Google Scholar 

  53. Pardo M, Choudhary JS (2012) Assignment of protein interactions from affinity purification/mass spectrometry data. J Proteome Res 11(3):1462–1474

    Article  CAS  PubMed  Google Scholar 

  54. Trinkle-Mulcahy L, Boulon S, Lam YW et al (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183(2):223–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramos Y, Huerta V, Martín D et al (2017) An “on-matrix” digestion procedure for AP-MS experiments dissects the interplay between complex-conserved and serotype-specific reactivities in Dengue virus-human plasma interactome. J Proteome 193:71. https://doi.org/10.1016/j.jprot.2017.07.004

    Article  CAS  Google Scholar 

  56. Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carvalho PC, Junqueira M, Valente RH et al (2008) Caititu: a tool to graphically represent peptide sequence coverage and domain distribution. J Proteome 71(4):486–489

    Article  CAS  Google Scholar 

  58. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  59. Douradinha B, McBurney SP, Soares de Melo KM et al (2014) C1q binding to dengue virus decreases levels of infection and inflammatory molecules transcription in THP-1 cells. Virus Res 179:231–234

    Article  CAS  PubMed  Google Scholar 

  60. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Huerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huerta, V., Ramos, Y. (2022). Isolation and Identification of Dengue Virus Interactome with Human Plasma Proteins by Affinity Purification-Mass Spectrometry. In: Mohana-Borges, R. (eds) Dengue Virus. Methods in Molecular Biology, vol 2409. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1879-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1879-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1878-3

  • Online ISBN: 978-1-0716-1879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics