Skip to main content

Modeling HIV Latency in Astrocytes with the Human Neural Progenitor Cell Line HNSC.100

  • Protocol
  • First Online:
HIV Reservoirs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2407))

Abstract

Neurocognitive disorders continue to occur in HIV-infected individuals, despite successful antiretroviral therapy. HIV can persist in the brain for decades, where it infects mainly microglial cells and astrocytes. Brain tissues from HIV-infected individuals have been shown to harbor HIV proviruses and to express early viral products with neurotoxic properties, like Tat. Egress of HIV from astrocytes to the periphery in animals further supports a critical role of astrocytes as HIV reservoirs. In vitro studies show that astrocytes can harbor latent HIV proviruses that can be activated by various agents and initiate productive infection of immune cells. Cell culture studies of HIV-infection of astrocytes have depended heavily on rapidly dividing cells derived from tumors or from fetal tissue. However, in adult brains the majority of astrocytes are nondividing. Therefore, cell culture models are needed to investigate the unique properties of latent HIV proviruses in differentiated astrocytes and to compare these with the properties of other HIV reservoirs.

This protocol gives guidelines for the culture of the human neural stem cell line HNSC.100 and a stable subpopulation with latent HIV-1 provirus, HNSCLatGFP1.2. The HNSC.100 cell line provides a single cell model system for the study of HIV persistence in proliferating progenitor cells as well as fully differentiated, nondividing astrocytes. The HNSCLatGFP1.2 cell line contains a full-length HIV-1 provirus derived from NL4-3 with GFP-coding sequences in a defective Env reading frame, enabling handling under Biosafety level 2 conditions and convenient observation of provirus reactivation by monitoring GFP expression. The latent provirus can be reactivated by latency reversing agents which allows the analysis of novel latency reversing agents as well as inhibitors of reactivators of latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81. https://doi.org/10.1038/nri1527

    Article  CAS  PubMed  Google Scholar 

  2. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, Suwanwela NC, Jagodzinski L, Michael N, Spudich S, van Griensven F, de Souza M, Kim J, Ananworanich J, Group RSS (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206(2):275–282. https://doi.org/10.1093/infdis/jis326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jia P, Zhao Z, Hulgan T, Bush WS, Samuels DC, Bloss CS, Heaton RK, Ellis RJ, Schork N, Marra CM, Collier AC, Clifford DB, Gelman BB, Sacktor N, Morgello S, Simpson DM, McCutchan JA, Barnholtz-Sloan JS, Franklin DR, Rosario D, Letendre SL, Grant I, Kallianpur AR, Group CS (2017) Genome-wide association study of HIV-associated neurocognitive disorder (HAND): a CHARTER group study. Am J Med Genet B Neuropsychiatr Genet 174(4):413–426. https://doi.org/10.1002/ajmg.b.32530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen NC, Partridge AT, Sell C, Torres C, Martin-Garcia J (2017) Fate of microglia during HIV-1 infection: from activation to senescence? Glia 65(3):431–446. https://doi.org/10.1002/glia.23081

    Article  PubMed  Google Scholar 

  5. Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13(1):1–22. https://doi.org/10.1097/00002030-199901140-00003

    Article  CAS  PubMed  Google Scholar 

  6. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. https://doi.org/10.1002/cne.21974

    Article  PubMed  Google Scholar 

  7. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  8. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66(2):253–258. https://doi.org/10.1002/ana.21697

    Article  PubMed  Google Scholar 

  9. King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV tat and neurotoxicity. Microbes Infect 8(5):1347–1357. https://doi.org/10.1016/j.micinf.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  10. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111(2):194–213. https://doi.org/10.1016/j.virusres.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  11. Spector C, Mele AR, Wigdahl B, Nonnemacher MR (2019) Genetic variation and function of the HIV-1 tat protein. Med Microbiol Immunol 208(2):131–169. https://doi.org/10.1007/s00430-019-00583-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seth P, Major EO (2005) Human brain derived cell culture models of HIV-1 infection. Neurotox Res 8(1–2):83–89. https://doi.org/10.1007/BF03033821

    Article  CAS  PubMed  Google Scholar 

  13. Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, Vesselingh SL, Purcell DF (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1(4):463–473. https://doi.org/10.2174/1570162033485122

    Article  CAS  PubMed  Google Scholar 

  14. Vincendeau M, Kramer S, Hadian K, Rothenaigner I, Bell J, Hauck SM, Bickel C, Nagel D, Kremmer E, Werner T, Leib-Mosch C, Brack-Werner R (2010) Control of HIV replication in astrocytes by a family of highly conserved host proteins with a common rev-interacting domain (Risp). AIDS 24(16):2433–2442. https://doi.org/10.1097/QAD.0b013e32833e8758

    Article  CAS  PubMed  Google Scholar 

  15. Narasipura SD, Kim S, Al-Harthi L (2014) Epigenetic regulation of HIV-1 latency in astrocytes. J Virol 88(5):3031–3038. https://doi.org/10.1128/JVI.03333-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lutgen V, Narasipura SD, Barbian HJ, Richards M, Wallace J, Razmpour R, Buzhdygan T, Ramirez SH, Prevedel L, Eugenin EA, Al-Harthi L (2020) HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog 16(6):e1008381. https://doi.org/10.1371/journal.ppat.1008381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider M, Tigges B, Meggendorfer M, Helfer M, Ziegenhain C, Brack-Werner R (2015) A new model for post-integration latency in macroglial cells to study HIV-1 reservoirs of the brain. AIDS 29(10):1147–1159. https://doi.org/10.1097/QAD.0000000000000691

    Article  CAS  PubMed  Google Scholar 

  18. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161(1):67–84. https://doi.org/10.1006/exnr.1999.7237

    Article  CAS  PubMed  Google Scholar 

  19. Rubio FJ, Bueno C, Villa A, Navarro B, Martinez-Serrano A (2000) Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol Cell Neurosci 16(1):1–13. https://doi.org/10.1006/mcne.2000.0854

    Article  CAS  PubMed  Google Scholar 

  20. Kunze C, Borner K, Kienle E, Orschmann T, Rusha E, Schneider M, Radivojkov-Blagojevic M, Drukker M, Desbordes S, Grimm D, Brack-Werner R (2018) Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia 66(2):413–427. https://doi.org/10.1002/glia.23254

    Article  PubMed  Google Scholar 

  21. Rothenaigner I, Kramer S, Meggendorfer M, Rethwilm A, Brack-Werner R (2009) Transduction of human neural progenitor cells with foamy virus vectors for differentiation-dependent gene expression. Gene Ther 16(3):349–358. https://doi.org/10.1038/gt.2008.173

    Article  CAS  PubMed  Google Scholar 

  22. Rothenaigner I, Kramer S, Ziegler M, Wolff H, Kleinschmidt A, Brack-Werner R (2007) Long-term HIV-1 infection of neural progenitor populations. AIDS 21(17):2271–2281. https://doi.org/10.1097/QAD.0b013e3282f12f27

    Article  PubMed  Google Scholar 

  23. Zhang H, Zhou Y, Alcock C, Kiefer T, Monie D, Siliciano J, Li Q, Pham P, Cofrancesco J, Persaud D, Siliciano RF (2004) Novel single-cell-level phenotypic assay for residual drug susceptibility and reduced replication capacity of drug-resistant human immunodeficiency virus type 1. J Virol 78(4):1718–1729. https://doi.org/10.1128/jvi.78.4.1718-1729.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Johanna Götz for excellent technical assistance. Furthermore, we thank Martha Schneider for generation of the HNSCLatGFP1.2 cell line. We are grateful to Ulrike Protzer, Helmholtz Zentrum München, Institute of Virology, for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelie Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bauer, A., Brack-Werner, R. (2022). Modeling HIV Latency in Astrocytes with the Human Neural Progenitor Cell Line HNSC.100. In: Poli, G., Vicenzi, E., Romerio, F. (eds) HIV Reservoirs. Methods in Molecular Biology, vol 2407. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1871-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1871-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1870-7

  • Online ISBN: 978-1-0716-1871-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics