Skip to main content

Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2406))

Abstract

While lactobacilli are not generally regarded as efficient cell factories for heterologous proteins, these food-grade Gram-positive bacteria are attractive as expression hosts for medicinal proteins. Furthermore, tools have been developed not only to secrete the protein of interest, but also to anchor the protein to the cell membrane or the cell wall. Research efforts aimed at the production and surface display of complex vaccine proteins have shown that lactobacilli are capable of producing heterologous proteins that are otherwise difficult to produce in soluble form. Many recent studies on expressing a wide variety of proteins in lactobacilli have employed the pSIP vector system, which offers a wide range of possibilities for inducible expression, including various options for secretion and surface anchoring. The modular nature of the pSIP vectors allows for rapid screening of multiple expression strategies. This chapter describes the pSIP vector system and how it can be used to accomplish protein expression in lactobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bermúdez-Humarán LG, Aubry C, Motta J-P, Deraison C, Steidler L, Vergnolle N, Chatel J-M, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16(3):278–283. https://doi.org/10.1016/j.mib.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  2. Diep DB, Mathiesen G, Eijsink VGH, Nes IF (2009) Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Curr Pharm Biotechnol 10(1):62–73. https://doi.org/10.2174/138920109787048571

    Article  CAS  PubMed  Google Scholar 

  3. Peirotén Á, Landete JM (2020) Natural and engineered promoters for gene expression in Lactobacillus species. Appl Microbiol Biotechnol 104(9):3797–3805. https://doi.org/10.1007/s00253-020-10426-0

    Article  CAS  PubMed  Google Scholar 

  4. Sørvig E, Grönqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229(1):119–126. https://doi.org/10.1016/S0378-1097(03)00798-5

    Article  CAS  PubMed  Google Scholar 

  5. Sørvig E, Mathiesen G, Naterstad K, Eijsink VGH, Axelsson L (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151(Pt 7):2439–2449. https://doi.org/10.1099/mic.0.28084-0

    Article  CAS  PubMed  Google Scholar 

  6. Mathiesen G, Sørvig E, Blatny J, Naterstad K, Axelsson L, Eijsink VGH (2004) High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39(2):137–143. https://doi.org/10.1111/j.1472-765X.2004.01551.x

    Article  CAS  PubMed  Google Scholar 

  7. Geiger B, Nguyen H-M, Wenig S, Nguyen HA, Lorenz C, Kittl R, Mathiesen G, Eijsink VGH, Haltrich D, Nguyen T-H (2016) From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J 116:45–53. https://doi.org/10.1016/j.bej.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen HA, Nguyen T-H, Nguyen T-T, Peterbauer CK, Mathiesen G, Haltrich D (2012) Chitinase from Bacillus licheniformis DSM13: expression in Lactobacillus plantarum WCFS1 and biochemical characterisation. Protein Expr Purif 81(2):166–174. https://doi.org/10.1016/j.pep.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Halbmayr E, Mathiesen G, Nguyen T-H, Maischberger T, Peterbauer CK, Eijsink VGH, Haltrich D (2008) High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system. J Agric Food Chem 56(12):4710–4719. https://doi.org/10.1021/jf073260+

    Article  CAS  PubMed  Google Scholar 

  10. Kaswurm V, Nguyen T-T, Maischberger T, Kulbe KD, Michlmayr H (2013) Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum. AMB Express 3(1):7. https://doi.org/10.1186/2191-0855-3-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Böhmer N, Lutz-Wahl S, Fischer L (2012) Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp. Appl Microbiol Biotechnol 96(4):903–912. https://doi.org/10.1007/s00253-012-4212-z

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen T-T, Nguyen H-M, Geiger B, Mathiesen G, Eijsink VGH, Peterbauer CK, Haltrich D, Nguyen T-H (2015) Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microb Cell Factories 14(1):30. https://doi.org/10.1186/s12934-015-0214-8

    Article  CAS  Google Scholar 

  13. Vaidyanathan H, Kandasamy V, Gopal Ramakrishnan G, Ramachandran K, Jayaraman G, Ramalingam S (2011) Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express 1(1):37. https://doi.org/10.1186/2191-0855-1-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasikumar P, Gomathi S, Anbazhagan K, Selvam GS (2013) Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int 2013:280432. https://doi.org/10.1155/2013/280432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18(4):631–639

    Article  CAS  PubMed  Google Scholar 

  16. Eijsink VGH, Brurberg MB, Middelhoven PH, Nes IF (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178(8):2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81(1–4):639–654

    Article  CAS  PubMed  Google Scholar 

  18. Axelsson L, Holck A (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177(8):2125–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hühne K, Axelsson L, Holck A, Kröckel L (1996) Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142(Pt 6):1437–1448. https://doi.org/10.1099/13500872-142-6-1437

    Article  PubMed  Google Scholar 

  20. Brurberg MB, Nes IF, Eijsink VG (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26(2):347–360. https://doi.org/10.1046/j.1365-2958.1997.5821951.x

    Article  CAS  PubMed  Google Scholar 

  21. Engelke G, Gutowskieckel Z, Kiesau P, Siegers K, Hammelmann M, Entian KD (1994) Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60(3):814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270(45):27299–27304

    Article  CAS  PubMed  Google Scholar 

  23. Mathiesen G, Huehne K, Kroeckel L, Axelsson L, Eijsink VGH (2005) Characterization of a new bacteriocin operon in sakacin P-producing Lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol 71(7):3565–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlaman HRM, Risseeuw E, Franke-van Dijk MEI, Hooykaas PJJ (1994) Nucleotide sequence corrections of the uidA open reading frame encoding beta-glucuronidase. Gene 138(1–2):259–260

    Article  CAS  PubMed  Google Scholar 

  25. Straume D, Axelsson L, Nes IF, Diep DB (2006) Improved expression and purification of the correctly folded response regulator PlnC from lactobacilli. J Microbiol Methods 67(2):193–201. https://doi.org/10.1016/j.mimet.2006.03.022

    Article  CAS  PubMed  Google Scholar 

  26. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178(15):4472–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fredriksen L, Kleiveland CR, Olsen Hult LT, Lea T, Nygaard CS, Eijsink VG, Mathiesen G (2012) Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes. Appl Environ Microbiol 78(16):5864–5871. https://doi.org/10.1128/AEM.01227-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fredriksen L, Mathiesen G, Sioud M, Eijsink VGH (2010) Cell wall anchoring of the 37-Kilodalton oncofetal antigen by Lactobacillus plantarum for mucosal cancer vaccine delivery. Appl Environ Microbiol 76(21):7359–7362. https://doi.org/10.1128/aem.01031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuczkowska K, Kleiveland CR, Minic R, Moen LF, Øverland L, Tjåland R, Carlsen H, Lea T, Mathiesen G, Eijsink VGH (2017) Immunogenic properties of Lactobacillus plantarum producing surface-displayed Mycobacterium tuberculosis antigens. Appl Environ Microbiol 83(2):e02782–e02716. https://doi.org/10.1128/aem.02782-16

    Article  CAS  PubMed  Google Scholar 

  30. Kuczkowska K, Mathiesen G, Eijsink V, Øynebraten I (2015) Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Fact 14(1):169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuczkowska K, Myrbråten I, Øverland L, Eijsink VGH, Follmann F, Mathiesen G, Dietrich J (2017) Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS One 12(5):e0176401. https://doi.org/10.1371/journal.pone.0176401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VGH, Dimitrijevic L, Mathiesen G (2015) Effects of orally applied Fes p1-displaying L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol 199:23–28. https://doi.org/10.1016/j.jbiotec.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  33. Michon C, Kuczkowska K, Langella P, Eijsink VG, Mathiesen G, Chatel JM (2015) Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact 14:95. https://doi.org/10.1186/s12934-015-0290-9

    Article  CAS  PubMed  Google Scholar 

  34. Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 15(1):1–16. https://doi.org/10.1186/s12934-016-0468-9

    Article  CAS  Google Scholar 

  35. Aukrust TW, Brurberg MB, Nes IF (1995) Transformation of Lactobacillus by electroporation. Methods Mol Biol 47:201–208

    CAS  PubMed  Google Scholar 

  36. Nguyen T-T, Nguyen HA, Arreola SL, Mlynek G, Djinović-Carugo K, Mathiesen G, Nguyen T-H, Haltrich D (2012) Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J Agric Food Chem 60(7):1713–1721. https://doi.org/10.1021/jf203909e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG (2009) Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 10(1):425. https://doi.org/10.1186/1471-2164-10-425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathiesen G, Sveen A, Piard JC, Axelsson L, Eijsink VGH (2008) Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J Appl Microbiol 105(1):215–226. https://doi.org/10.1111/j.1365-2672.2008.03734.x

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz-Velez L, Goodwin A, Schaefer L, Britton RA (2020) Challenges and pitfalls in the engineering of human interleukin 22 (hIL-22) secreting Lactobacillus reuteri. Front Bioeng Biotechnol 8:543. https://doi.org/10.3389/fbioe.2020.00543

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sørvig E, Skaugen M, Naterstad K, Eijsink VGH, Axelsson L (2005) Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system. Microbiology 151(2):421–431. https://doi.org/10.1099/mic.0.27389-0

    Article  CAS  PubMed  Google Scholar 

  41. Kuczkowska K, Øverland L, Rocha SDC, Eijsink VGH, Mathiesen G (2019) Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Vaccine 37(43):6371–6379. https://doi.org/10.1016/j.vaccine.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  42. Karlskås IL, Maudal K, Axelsson L, Rud I, Eijsink VGH, Mathiesen G (2014) Heterologous protein secretion in lactobacilli with modified pSIP vectors. PLoS One 9(3):e91125. https://doi.org/10.1371/journal.pone.0091125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang M, Pan L, Zhou P, Lv J, Zhang Z, Wang Y, Zhang Y (2015) Protection against foot-and-mouth disease virus in guinea pigs via oral administration of recombinant Lactobacillus plantarum expressing VP1. PLoS One 10(12):e0143750. https://doi.org/10.1371/journal.pone.0143750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Bokhorst-van de Veen H, Lee IC, Marco ML, Wels M, Bron PA, Kleerebezem M (2012) Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers. PLoS One 7(7):e39053. https://doi.org/10.1371/journal.pone.0039053

    Article  CAS  Google Scholar 

  45. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55(12):3119–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank previous lab members, as well as Dietmar Haltrich and Thu-Ha Nguyen at the University of Natural Resources and Life Sciences (BOKU) in Vienna, for their contributions to our work, which was supported by the Research Council of Norway, most recently by grants 196363 and 234502 awarded by the Globvac program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. H. Eijsink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mathiesen, G., Axelsson, L., Eijsink, V.G.H. (2022). Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors. In: Garcia Fruitós, E., Arís Giralt, A. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 2406. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1859-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1859-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1858-5

  • Online ISBN: 978-1-0716-1859-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics