Skip to main content

Measurement of Cerebrovascular Reactivity Using Transcranial Doppler

  • Protocol
  • First Online:
Cerebrovascular Reactivity

Part of the book series: Neuromethods ((NM,volume 175))

  • 459 Accesses

Abstract

The Doppler effect (or Doppler shift), which is the basis for the transcranial Doppler (TCD) technique, was described by Christian Andreas Doppler, an Austrian physicist, at a meeting of the Natural Sciences Section of the Royal Bohemian Society in Prague on 25 May 1842. The principle was presented in the paper Über das farbige Licht der Doppelsterne (Eden, Ultrasound Med Biol 16:831–832, 1990) (Concerning the colored light of the double stars) and initially applied to astronomy. In 1965, M. Miyazaki and K. Kato (Jpn Circ J 29:375–382, 1965) described the use of ultrasonic Doppler technique in the evaluation of blood flow and hemodynamics. However, ultrasound technology at the time was not able to penetrate the skull, and therefore cerebral blood flow (CBF) could not be assessed directly. With the development of the low frequency pulsed Doppler technique (2 MHz), able to penetrate the calvarium in most skulls, Aaslid et al. (J Neurosurg 57:769–774, 1982) were able to use TCD to measure blood flow velocity in the intracranial arteries for the first time. Since then, TCD has been used in medical practice as a technique to measure CBF and later cerebrovascular reactivity (CVR) in many conditions, including ischemic stroke, TBI, subarachnoid hemorrhage and vasospasm, and brain death, both in clinical practice and as a research tool in the search of better understanding physiologic responses of the intracranial circulation to healthy and pathologic stimuli. The objective of this chapter is to provide a brief summary of the use of TCD in the evaluation of cerebrovascular reactivity, with a brief overview of its use in TBI and aneurysmal subarachnoid hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eden A (1990) The doppler family. Ultrasound Med Biol 16:831–832

    Article  CAS  PubMed  Google Scholar 

  2. Miyazaki M, Kato K (1965) Measurement of cerebral blood flow by ultrasonic doppler technique. Jpn Circ J 29:375–382

    Article  CAS  PubMed  Google Scholar 

  3. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    Article  CAS  PubMed  Google Scholar 

  4. Bronk DW, Gesell R (1927) The regulation of respiration. Am J Physiol Leg Cont 82:170–180

    Article  CAS  Google Scholar 

  5. Kety SS, Schmidt CF (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25:107–119

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kirkpatrick P (1997) Transcranial doppler. In: Peter Reilly RB (ed) Head injury: pathophysiology and management of severe closed head injury. Chapman & Hall, London

    Google Scholar 

  7. Purkayastha S, Sorond F (2012) Transcranial doppler ultrasound: technique and application. Semin Neurol 32:411–420

    Article  PubMed  Google Scholar 

  8. Krejza J, Swiat M, Pawlak MA, Oszkinis G, Weigele J, Hurst RW et al (2007) Suitability of temporal bone acoustic window: conventional tcd versus transcranial color-coded duplex sonography. J Neuroimaging 17:311–314

    Article  PubMed  Google Scholar 

  9. Hennerici M, Rautenberg W, Sitzer G, Schwartz A (1987) Transcranial doppler ultrasound for the assessment of intracranial arterial flow velocity--part 1. Examination technique and normal values. Surg Neurol 27:439–448

    Article  CAS  PubMed  Google Scholar 

  10. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Article  CAS  PubMed  Google Scholar 

  11. Khurana VF et al (2004) Biology of cerebral blood vessels and blood flow. In: le Roux PW, Winn HR, Newell DW (eds) Management of cerebral aneurysms. Saunders, Philadelphia, PA

    Google Scholar 

  12. Kiss B, Dallinger S, Findl O, Rainer G, Eichler HG, Schmetterer L (1999) Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide. Am J Phys 276:R1661–R1667

    CAS  Google Scholar 

  13. Ehrenreich DL, Burns RA, Alman RW, Fazekas JF (1961) Influence of acetazolamide on cerebral blood flow. Arch Neurol 5:227–232

    Article  CAS  PubMed  Google Scholar 

  14. Hauge A, Nicolaysen G, Thoresen M (1983) Acute effects of acetazolamide on cerebral blood flow in man. Acta Physiol Scand 117:233–239

    Article  CAS  PubMed  Google Scholar 

  15. Wolf ME (2015) Functional tcd: regulation of cerebral hemodynamics--cerebral autoregulation, vasomotor reactivity, and neurovascular coupling. Front Neurol Neurosci 36:40–56

    Article  PubMed  Google Scholar 

  16. Brown MM, Wade JP, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108(Pt 1):81–93

    Article  PubMed  Google Scholar 

  17. Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:484–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huber P, Handa J (1967) Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Investig Radiol 2:17–32

    Article  CAS  Google Scholar 

  19. Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R (1984) Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure--a transcranial ultrasound doppler study. J Cereb Blood Flow Metab 4:368–372

    Article  CAS  PubMed  Google Scholar 

  20. Raichle ME, Posner JB, Plum F (1970) Cerebral blood flow during and after hyperventilation. Arch Neurol 23:394–403

    Article  CAS  PubMed  Google Scholar 

  21. Diji A, Greenfield AD (1960) The local effect of carbon dioxide on human blood vessels. Am Heart J 60:907–914

    Article  CAS  PubMed  Google Scholar 

  22. Lambertsen CJ (1960) Carbon dioxide and respiration in acid-base homeostasis. Anesthesiology 21:642–651

    Article  CAS  PubMed  Google Scholar 

  23. Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM (1988) Noninvasive assessment of co2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 19:963–969

    Article  CAS  PubMed  Google Scholar 

  24. Bishop CC, Powell S, Rutt D, Browse NL (1986) Transcranial doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17:913–915

    Article  CAS  PubMed  Google Scholar 

  25. Dernbach PD, Little JR, Jones SC, Ebrahim ZY (1988) Altered cerebral autoregulation and co2 reactivity after aneurysmal subarachnoid hemorrhage. Neurosurgery 22:822–826

    Article  CAS  PubMed  Google Scholar 

  26. Cold GE, Jensen FT, Malmros R (1977) The cerebrovascular co2 reactivity during the acute phase of brain injury. Acta Anaesthesiol Scand 21:222–231

    Article  CAS  PubMed  Google Scholar 

  27. Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G et al (2007) Prospective targeting and control of end-tidal co2 and o2 concentrations. J Physiol 581:1207–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Conklin J, Fierstra J, Crawley AP, Han JS, Poublanc J, Mandell DM et al (2010) Impaired cerebrovascular reactivity with steal phenomenon is associated with increased diffusion in white matter of patients with moyamoya disease. Stroke 41:1610–1616

    Article  PubMed  Google Scholar 

  29. Conklin J, Fierstra J, Crawley AP, Han JS, Poublanc J, Silver FL et al (2011) Mapping white matter diffusion and cerebrovascular reactivity in carotid occlusive disease. Neurology 77:431–438

    Article  CAS  PubMed  Google Scholar 

  30. da Costa L, Fierstra J, Fisher JA, Mikulis DJ, Han JS, Tymianski M (2014) Bold mri and early impairment of cerebrovascular reserve after aneurysmal subarachnoid hemorrhage. J Magn Reson Imaging 40:972

    Article  PubMed  Google Scholar 

  31. da Costa L, van Niftrik CB, Crane D, Fierstra J, Bethune A (2016) Temporal profile of cerebrovascular reactivity impairment, gray matter volumes, and persistent symptoms after mild traumatic head injury. Front Neurol 7:70

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fierstra J, Conklin J, Krings T, Slessarev M, Han JS, Fisher JA et al (2011) Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain 134:100–109

    Article  PubMed  Google Scholar 

  33. Fierstra J, Spieth S, Tran L, Conklin J, Tymianski M, ter Brugge KG et al (2011) Severely impaired cerebrovascular reserve in patients with cerebral proliferative angiopathy. J Neurosurg Pediatr 8:310–315

    Article  PubMed  Google Scholar 

  34. Mandell DM, Han JS, Poublanc J, Crawley AP, Fierstra J, Tymianski M et al (2011) Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent mr imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR. Am J Neuroradiol 32:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fierstra J, Sobczyk O, Battisti-Charbonney A, Mandell DM, Poublanc J, Crawley AP et al (2013) Measuring cerebrovascular reactivity: what stimulus to use? J Physiol 591:5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida K, Nakamura S, Watanabe H, Kinoshita K (1996) Early cerebral blood flow and vascular reactivity to acetazolamide in predicting the outcome after ruptured cerebral aneurysm. Acta Neurol Scand Suppl 166:131–134

    Article  CAS  PubMed  Google Scholar 

  37. Du Boulay G, Symon L, Ackerman RH, Dorsch D, Kendall BE, Shah SH (1973) The reactivity of the spastic arteries. Neuroradiology 5:37–39

    Article  PubMed  Google Scholar 

  38. Gur D, Wolfson SK Jr, Yonas H, Good WF, Shabason L, Latchaw RE et al (1982) Progress in cerebrovascular disease: local cerebral blood flow by xenon enhanced ct. Stroke 13:750–758

    Article  CAS  PubMed  Google Scholar 

  39. Gibbs JM, Wise RJ, Leenders KL, Herold S, Frackowiak RS, Jones T (1985) Cerebral haemodynamics in occlusive carotid-artery disease. Lancet 1:933–934

    Article  CAS  PubMed  Google Scholar 

  40. Tancredi FB, Gauthier CJ, Madjar C, Bolar DS, Fisher JA, Wang DJ et al (2012) Comparison of pulsed and pseudocontinuous arterial spin-labeling for measuring co2 -induced cerebrovascular reactivity. J Magn Reson Imaging 36:312–321

    Article  PubMed  Google Scholar 

  41. Mark CI, Slessarev M, Ito S, Han J, Fisher JA, Pike GB (2010) Precise control of end-tidal carbon dioxide and oxygen improves bold and asl cerebrovascular reactivity measures. Magn Reson Med 64:749–756

    Article  PubMed  Google Scholar 

  42. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD (1995) Near-infrared spectroscopy use in patients with head injury. J Neurosurg 83:963–970

    Article  CAS  PubMed  Google Scholar 

  43. Frost RB, Farrer TJ, Primosch M, Hedges DW (2013) Prevalence of traumatic brain injury in the general adult population: a meta-analysis. Neuroepidemiology 40:154–159

    Article  PubMed  Google Scholar 

  44. NIH Consensus Development Panel on Rehabilitation of Persons with Traumatic Brain I (1999) Rehabilitation of persons with traumatic brain injury. JAMA 282:974–983

    Article  Google Scholar 

  45. Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M et al (2007) Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with meg, spect, and mri. J Head Trauma Rehabil 22:141–155

    Article  PubMed  Google Scholar 

  46. Len TK, Neary JP (2011) Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging 31:85–93

    CAS  PubMed  Google Scholar 

  47. Overgaard J, Tweed WA (1974) Cerebral circulation after head injury. 1. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 41:531–541

    Article  CAS  PubMed  Google Scholar 

  48. DeWitt DS, Prough DS (2003) Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 20:795–825

    Article  PubMed  Google Scholar 

  49. Junger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM et al (1997) Cerebral autoregulation following minor head injury. J Neurosurg 86:425–432

    Article  CAS  PubMed  Google Scholar 

  50. Len TK, Neary JP, Asmundson GJG, Goodman DG, Bjornson B, Bhambhani YN (2011) Cerebrovascular reactivity impairment after sport-induced concussion. Med Sci Sports Exerc 43:2241–2248

    Article  PubMed  Google Scholar 

  51. Lang EW, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y et al (2003) Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry 74:1053–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yonas H (1994) Use of xenon and ultrafast ct to measure cerebral blood flow. AJNR. Am J Neuroradiol 15:794–795

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Joseph MN, Stable JL (2000) Xenon computed tomography cerebral blood flow measurement in neurological disease: review and protocols. Int J Emerg Intens Care Med 4

    Google Scholar 

  55. Chan KH, Dearden NM, Miller JD (1993) Transcranial doppler-sonography in severe head injury. Acta Neurochir Suppl (Wien) 59:81–85

    CAS  Google Scholar 

  56. Ng SCP, Poon WS, Chan MTV, Lam JMK, Lam W, Metreweli C (2000) Transcranial doppler ultrasonography (TCD) in ventilated head injured patients: correlation with stable xenon-enhanced CT. Springer, Vienna, pp 479–482

    Google Scholar 

  57. Zurynski YA, Dorsch NW, Pearson I (1995) Incidence and effects of increased cerebral blood flow velocity after severe head injury: a transcranial doppler ultrasound study I. Prediction of post-traumatic vasospasm and hyperemia. J Neurol Sci 134:33–40

    Article  CAS  PubMed  Google Scholar 

  58. Zurynski YA, Dorsch NWC, Fearnside MR (1995) Incidence and effects of increased cerebral blood flow velocity after severe head injury: a transcranial doppler ultrasound study II. Effect of vasospasm and hyperemia on outcome. J Neurol Sci 134:41–46

    Article  CAS  PubMed  Google Scholar 

  59. Ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L (1998) Changes in cerebral blood flow during paco2 variations in patients with severe closed head injury: comparison between the fick and transcranial doppler methods. J Neurosurg 88:996–1001

    Article  PubMed  Google Scholar 

  60. Gomez CR, Backer RJ, Bucholz RD (1991) Transcranial doppler ultrasound following closed head injury: vasospasm or vasoparalysis? Surg Neurol 35:30–35

    Article  CAS  PubMed  Google Scholar 

  61. Rigamonti A, Ackery A, Baker AJ (2008) Transcranial doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care. Can J Anaesth 55:112–123

    Article  PubMed  Google Scholar 

  62. Creissard P, Proust F, Langlois O (1995) Vasospasm diagnosis: theoretical and real transcranial doppler sensitivity. Acta Neurochir 136:181–185

    Article  CAS  PubMed  Google Scholar 

  63. Tsivgoulis GN, Neumyer MM, Alexandrov AV (2011) Diagnostic criteria for cerebrovascular ultrasound. In: Alexandrov A (ed) Cerebrovascular ultrasound in stroke prevention and treatment. Wiley-Blackwell, Singapore

    Google Scholar 

  64. Giller CA (1989) Transcranial doppler monitoring of cerebral blood velocity during craniotomy. Neurosurgery 25:769–776

    Article  CAS  PubMed  Google Scholar 

  65. Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery 47:819–825. discussions 825–816

    Article  CAS  PubMed  Google Scholar 

  66. Carrera E, Kurtz P, Badjatia N, Fernandez L, Claassen J, Lee K et al (2010) Cerebrovascular carbon dioxide reactivity and delayed cerebral ischemia after subarachnoid hemorrhage. Arch Neurol 67:434–439

    Article  PubMed  Google Scholar 

  67. Hashi K, Meyer JS, Shinmaru S, Welch KM, Teraura T (1972) Cerebral hemodynamic and metabolic changes after experimental subarachnoid hemorrhage. J Neurol Sci 17:1–14

    Article  CAS  PubMed  Google Scholar 

  68. Ishii R (1979) Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 50:587–594

    Article  CAS  PubMed  Google Scholar 

  69. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ (2004) Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg 98:1133–1139. table of contents

    Article  PubMed  Google Scholar 

  70. Abe K, Demizu A, Kamada K, Shimada Y, Sakaki T, Yoshiya I (1992) Prostaglandin e1 and carbon dioxide reactivity during cerebral aneurysm surgery. Can J Anaesth 39:247–252

    Article  CAS  PubMed  Google Scholar 

  71. Meixensberger J (1993) Xenon 133--cbf measurements in severe head injury and subarachnoid haemorrhage. Acta Neurochir Suppl (Wien) 59:28–33

    CAS  Google Scholar 

  72. Hassler W, Chioffi F (1989) Co2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir 98:167–175

    Article  CAS  PubMed  Google Scholar 

  73. Frontera JA, Rundek T, Schmidt JM, Claassen J, Parra A, Wartenberg KE et al (2006) Cerebrovascular reactivity and vasospasm after subarachnoid hemorrhage: a pilot study. Neurology 66:727–729

    Article  CAS  PubMed  Google Scholar 

  74. Da Costa L, Houlden D, Rubenfeld G, Tymianski M, Fisher J, Fierstra J (2015) Impaired cerebrovascular reactivity in the early phase of subarachnoid hemorrhage in good clinical grade patients does not predict vasospasm. Springer International Publishing, Cham, pp 249–253

    Google Scholar 

  75. Costa LB (2014) Development of an improved bedside methodology for measurement of cerebrovascular reactivity. Master thesis. University of toronto. Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leodante da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

da Costa, L., Chapman, M. (2022). Measurement of Cerebrovascular Reactivity Using Transcranial Doppler. In: Chen, J., Fierstra, J. (eds) Cerebrovascular Reactivity. Neuromethods, vol 175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1763-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1763-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1762-5

  • Online ISBN: 978-1-0716-1763-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics