Skip to main content

Generation of Knockout and Fragment Deletion Mutants in Soybean by CRISPR-Cas9

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR-Cas) systems were efficiently used for precise genome editing. CRISPR-Cas systems can generate highly specific double-strand breaks (DSBs) at the target site, and desired sequence modifications can be introduced during the DSB repair process, such as nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways. Among Cas nuclease proteins, Cas9 from Streptococcus pyogenes (SpCas9) is well-studied, and the CRISPR-Cas9 is the most widely used genome editing tool for basic research and crop improvements. It is suitable not only for targeted mutagenesis but also for creating large fragment deletions in plants. In this protocol, we present a step-by-step guide to the CRISPR-Cas9-mediated targeted mutagenesis or large fragment deletions in soybean. Detailed procedures will guide through the essential steps including the design of sgRNAs, construction of CRISPR-Cas9 vectors, Agrobacterium-mediated soybean transformation, and identification of mutant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev 19:275–276

    Article  CAS  Google Scholar 

  2. Kim H, Kim ST, Kim SG, Kim JS (2015) Targeted genome editing for crop improvement. Plant Breed Biotechnol 3:283–290

    Article  Google Scholar 

  3. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869

    Article  CAS  Google Scholar 

  4. Yang N, Wang R, Zhao Y (2017) Revolutionize genetic studies and crop improvement with high-through and genome-scale CRISPR/Cas9 gene editing technology. Mol Plant 10:1141–1143

    Article  CAS  Google Scholar 

  5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  7. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  8. Molla KA, Karmakar S, Islam MT (2020) Wide horizons of CRISPR-Cas-derived Technologies for Basic Biology, agriculture, and medicine. In: Islam MT, Bhowmik PK, Molla KA (eds) CRISPR-Cas methods, Springer protocols handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0616-2_1

    Chapter  Google Scholar 

  9. Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco E, Gotta GM, Maeder ML, Kennedy EM, Kornepati AVR, Sousa A, Collins MA, Jayaram H, Cullen BR, Bumcrot D (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 24(16):257

    Article  Google Scholar 

  10. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Young JK (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298

    Article  CAS  Google Scholar 

  11. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485

    Article  Google Scholar 

  12. Xie H, Tang L, He X, Liu X, Zhou C, Liu J, Ge X, Li J, Liu C, Zhao J, Qu J, Song Z, Gu F (2018) SaCas9 requires 50-NNGRRT-30 PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J 14(4):e1700561

    Article  Google Scholar 

  13. Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol Cell 67(4):633–645

    Article  CAS  Google Scholar 

  14. Samanta MK, Dey A, Gayen S (2016) CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res 25:561–573

    Article  CAS  Google Scholar 

  15. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  Google Scholar 

  16. Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran LSP, Cao D (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol 19:131

    Article  Google Scholar 

  17. Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018a) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    Article  CAS  Google Scholar 

  18. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9 mediated genome editing in soybean hairy roots. PLoS One 10:e0136064

    Article  Google Scholar 

  19. Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W (2018b) CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci 19:3835

    Article  Google Scholar 

  20. Cai Y, Chen L, Zhang Y, Yuan S, Su Q, Sun S, Wu C, Yao W, Han T, Hou W (2020a) Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnol J 18:1996–1998

    Article  Google Scholar 

  21. Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W (2020b) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J 18:298–309

    Article  CAS  Google Scholar 

  22. Chen L, Cai Y, Qu M, Wang L, Sun H, Jiang B, Wu T, Liu L, Sun S, Wu C, Yao W, Yuan S, Han T, Hou W (2020) Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. Plant Cell Environ 43:934–944

    Article  Google Scholar 

  23. Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z, Kou K, Tang Y, Lin X, Zhao X, Chen L, Liu B, Kong F (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol 19:562

    Article  CAS  Google Scholar 

  24. Do PT, Nguyen CX, Bui HT, Tran LTN, Stacey G, Gillman JD, Zhang ZJ, Stacey MG (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19:311

    Article  Google Scholar 

  25. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  Google Scholar 

  26. Wang L, Sun S, Wu T, Liu L, Sun X, Cai Y, Li J, Jia H, Yuan S, Chen L, Jiang B, Wu C, Hou W, Han T (2020) Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J 18(9):1869–1881. https://doi.org/10.1111/pbi.13346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Cai Y, Liu X, Yao W, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) Improvement of soybean Agrobacterium-mediated transformation efficiency by adding glutamine and asparagine into the culture media. Int J Mol Sci 19:3039

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Science and Technology Projects of China (2016ZX08010-004), the Ministry of Science and Technology of China (2016YFD0100504), the National Natural Science Foundation of China (31871644), and the CAAS (Chinese Academy of Agriculture Sciences) Agricultural Science and Technology Innovation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, L., Cai, Y., Hou, W. (2021). Generation of Knockout and Fragment Deletion Mutants in Soybean by CRISPR-Cas9. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics