Skip to main content

Evaluation of Neurotoxic Effects in Zebrafish Embryos by Automatic Measurement of Early Motor Behaviors

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

Abstract

Zebrafish (Danio rerio) has rapidly become a popular model species for behavioral studies that may be relevant to drug screening and safety toxicology. Zebrafish embryos show a complex behavioral repertoire already a few hours after fertilization. Particularly, early stage zebrafish show characteristic behavioral features such as spontaneous tail coiling (STC) or induced movements when exposed to a short and bright light flash (called photomotor response—PMR). In this chapter, we provide the methods for assessing STC and PMR in zebrafish embryos and to detect changes provoked by chemicals. One of the protocols uses video analysis suitable for automated high-throughput screening. Moreover, both protocols describe the use of automated video analysis by using an open-source integration platform (KNIME® analytics platform), providing a flexible workflow system that can be adapted to a diversity of video recordings. We also provide a toxicological validation of this assay and show that these protocols can be used to provide an automated, high data-content readout for zebrafish behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey JM, Oliveri AN, Levin ED (2015) Pharmacological analyses of learning and memory in zebrafish (Danio rerio). Pharmacol Biochem Behav 139(Pt B):103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crofton KM, Mundy WR, Lein PJ et al (2010) Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX 28:9–15

    Article  Google Scholar 

  3. Coecke S, Goldberg AM, Allen S et al (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115:924–931

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tropepe V, Sive HL (2003) Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2:268–281

    Article  CAS  PubMed  Google Scholar 

  5. Brustein E, Saint-Amant L, Buss RR et al (2003) Steps during the development of the zebrafish locomotor network. J Physiol 97:77–86

    Google Scholar 

  6. Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37:622–632

    Article  CAS  PubMed  Google Scholar 

  7. Zindler F, Beedgen F, Braunbeck T (2019) Time-course of coiling activity in zebrafish (Danio rerio) embryos exposed to ethanol as an endpoint for developmental neurotoxicity (DNT) – hidden potential and underestimated challenges. Chemposphere 235:12–20

    Article  CAS  Google Scholar 

  8. Ogungbemi AO, Teixido E, Massei R et al (2020) Optimization of the spontaneous tail coiling test for fast assessment of neurotoxic effects in the zebrafish embryo using an automated workflow in KNIME®. Neurotoxicol Teratol 81:106918

    Article  CAS  PubMed  Google Scholar 

  9. Drapeau P, Saint-Amant L, Buss RR et al (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  CAS  PubMed  Google Scholar 

  10. Kokel D, Bryan J, Laggner C et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kokel D, Peterson RT (2011) Using the Zebrafish Photomotor response for psychotropic drug screening. Methods Cell Biol 105:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selderslaghs IWT, Hooyberghs J, Blust R et al (2013) Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37:44–56

    Article  CAS  PubMed  Google Scholar 

  13. Vliet SM, Ho TC, Volz DC (2017) Behavioral screening of the LOPAC1280 library in zebrafish embryos. Toxicol Appl Pharmacol 329:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Legradi J, el Abdellaoui N, van Pomeren M et al (2015) Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res Int 22:16277–16289

    Article  CAS  PubMed  Google Scholar 

  15. Ogungbemi A, Leuthold D, Scholz S et al (2019) Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: a review on how experimental parameters impact the predictability of behavior changes. Environ Sci Eur 31:88

    Article  Google Scholar 

  16. Berthold MR, Cebron N, Dill F et al (2008) KNIME: the Konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L et al (eds) Data analysis, machine learning and applications. Springer, Berlin, Heidelberg, pp 319–326

    Chapter  Google Scholar 

  17. Lammer E, Carr GJ, Wendler K et al (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149:196–209

    Article  CAS  PubMed  Google Scholar 

  18. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). Oregon press, University of

    Google Scholar 

  19. ISO International Standards (1996) Water quality – Determination of the acute lethal toxicity of substance to a freshwater fish [Brachydanio rerio Hamilton-Buchanan] ISO 7346-3: Flow-through method. http://www.iso.org

  20. OECD (2013) Test no. 236: fish embryo acute toxicity (FET) test. OECD guidelines for the testing of chemicals, subheading 2. Paris, France. 1–22

    Google Scholar 

  21. Fischer FC, Cirpka OA, Goss K-U et al (2018) Application of experimental polystyrene partition constants and diffusion coefficients to predict the sorption of neutral organic chemicals to multiwell plates in in vivo and in vitro bioassays. Environ Sci Technol 52:13511–13522

    Article  CAS  PubMed  Google Scholar 

  22. Riedl J, Altenburger R (2007) Physicochemical substance properties as indicators for unreliable exposure in microplate-based bioassays. Chemosphere 67:2210–2220

    Article  CAS  PubMed  Google Scholar 

  23. Teixidó E, Klüver N, Ogungbemi A, et al (2020) KNIME workflows for the evaluation of neurotoxic effects in zebrafish embryos by automatic measurement of early motor behaviours [Data set]. https://doi.org/10.5281/zenodo.3835947

  24. Copmans D, Meinl T, Dietz C et al (2016) A KNIME-based analysis of the Zebrafish photomotor response clusters the phenotypes of 14 classes of neuroactive molecules. J Biomol Screen 21:427–436

    Article  CAS  PubMed  Google Scholar 

  25. Developers FFmpeg (2016) FFmpeg tool. http://ffmpeg.org

  26. Ryan JA, Ulrich JN (2018) Quantmod: Quantitative Financial Modelling Framework. R package version 0.4-13.

    Google Scholar 

  27. Wahlby C, Sintorn I-M, Erlandsson F et al (2004) Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 215:67–76

    Article  CAS  PubMed  Google Scholar 

  28. Ritz C, Baty F, Streibig JC et al (2015) Dose-response analysis using R. PLoS One 10:e0146021

    Article  PubMed  PubMed Central  Google Scholar 

  29. Croen LA, Connors SL, Matevia M et al (2011) Prenatal exposure to β2-adrenergic receptor agonists and risk of autism spectrum disorders. J Neurodev Disord 3:307–315

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kudo C, Kori M, Matsuzaki K et al (2003) Diclofenac inhibits proliferation and differentiation of neural stem cells. Biochem Pharmacol 66:289–295

    Article  CAS  PubMed  Google Scholar 

  31. Andreasson KI, Savonenko A, Vidensky S et al (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21:8198–8209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biol TJ, Elibol B, Aritan Oğur B et al (2019) Prenatal exposure of diclofenac sodium alters the behavioral development of young Wistar rats. Turk J Biol 43:305–313

    Article  Google Scholar 

  33. Teixidó E, Kießling TR, Krupp E et al (2019) Automated morphological feature assessment for Zebrafish embryo developmental toxicity screens. Toxicol Sci 167:438–449

    Article  PubMed  Google Scholar 

  34. Bittner L, Teixidó E, Keddi I et al (2019) pH-dependent uptake and sublethal effects of antihistamines in zebrafish (Danio rerio) embryos. Aquat Toxicol 38:1012–1022

    CAS  Google Scholar 

  35. Maes J, Verlooy L, Buenafe OE et al (2012) Evaluation of 14 organic solvents and carriers for screening applications in Zebrafish embryos and larvae. PLoS One 7:e43850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Padilla S, Hunter DL, Padnos B et al (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 33:624–630

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Teixidó .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Figure S1

Mean frequency of spontaneous tail coiling (STC) of untreated zebrafish embryos over time. Error bars indicate the standard deviation of n=3 biological replicates of 13-16 embryos each. Solid line describes the polynomial fit of the data (DOCX 49 kb)

Table S1

Configuration of the communication with ffmpeg and external tool node (DOCX 70 kb)

Table S2

Example of plate layout (saved as excel file) for 96 well plate analysis. The layout can be generated using the supplementary file supplied with the KNIME workflow (excel file named animal list). A layout should be generated for each video recording for the PMR and STC analysis in 96 well-plates. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teixidó, E., Klüver, N., Ogungbemi, A.O., Küster, E., Scholz, S. (2021). Evaluation of Neurotoxic Effects in Zebrafish Embryos by Automatic Measurement of Early Motor Behaviors. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics