Skip to main content

Spinning Methods Used for Construction of One- and Two-Dimensional Fibrous Protein Materials

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

Abstract

Natural silk protein fibers have shown a great attraction to the researchers due to the extraordinary mechanical property, biocompatibility, and functional diversity. Unfortunately, the low yield and unevenness have hampered the scale use of the natural silk fibers. Herein, the appearance of the bioinspired artificial spinning strategy offers an effective way to fabricate silk fibers with controllable structures and functionality. This chapter describes an experimental method to prepare silk protein fibers on a large scale and summarizes the method to investigate the effects of the structure–property relationship of the recombinant protein fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yoshioka T, Tsubota T, Tashiro K, Jouraku A, Kameda T (2019) A study of the extraordinarily strong and tough silk produced by bagworms. Nat Commun 10:1469

    Article  Google Scholar 

  2. Porter D, Guan J, Vollrath F (2013) Spider silk: super material or thin fibre? Adv Mater 25:1275–1279

    Article  CAS  Google Scholar 

  3. Hu F, Lin N, Liu XY (2020) Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 23:101035

    Article  CAS  Google Scholar 

  4. Wang C, Xia K, Zhang Y, Kaplan DL (2019) Silk-based advanced materials for soft electronics. Acc Chem Res 52:2916–2927

    Article  CAS  Google Scholar 

  5. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  Google Scholar 

  6. Huang W, Ling S, Li C, Omenetto FG, Kaplan DL (2018) Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 47:6486–6504

    Article  CAS  Google Scholar 

  7. Yang N, Zhang W, Ye C, Chen X, Ling S (2019) Nanobiopolymers fabrication and their life cycle assessments. Biotechnol J 14:e1700754

    Article  Google Scholar 

  8. Zheng K, Ling S (2019) De novo Design of Recombinant Spider Silk Proteins for material applications. Biotechnol J 14:e1700753

    Article  Google Scholar 

  9. Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL (2018) Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12:6968–6977

    Article  CAS  Google Scholar 

  10. Zhang C, Xia L, Deng B, Li C, Wang Y, Li R, Dai F, Liu X, Xu W (2020) Fabrication of a high-toughness polyurethane/fibroin composite without interfacial treatment and its toughening mechanism. ACS Appl Mater Interfaces 12:25409–25418

    Article  CAS  Google Scholar 

  11. Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56

    Article  CAS  Google Scholar 

  12. Andersson M, Jia Q, Abella A, Lee XY, Landreh M, Purhonen P, Hebert H, Tenje M, Robinson CV, Meng Q, Plaza GR, Johansson J, Rising A (2017) Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 13:262–264

    Article  CAS  Google Scholar 

  13. Madurga R, Ganan-Calvo AM, Plaza GR, Guinea GV, Elices M, Perez-Rigueiro J (2017) Production of high performance bioinspired silk fibers by straining flow spinning. Biomacromolecules 18:1127–1133

    Article  CAS  Google Scholar 

  14. Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL (2020) Microfluidic silk fibers with aligned hierarchical microstructures. ACS Biomater Sci Eng 6:2847–2854

    Article  CAS  Google Scholar 

  15. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 48:3584–3596

    Article  CAS  Google Scholar 

  16. Zhou G, Shao Z, Knight DP, Yan J, Chen X (2009) Silk fibers extruded artificially from aqueous solutions of RegeneratedBombyx moriSilk fibroin are tougher than their natural counterparts. Adv Mater 21:366–370

    Article  CAS  Google Scholar 

  17. Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S (2019) Biological material interfaces as inspiration for mechanical and optical material designs. Chem Rev 119:12279–12336

    Article  CAS  Google Scholar 

  18. Wei W, Zhang Y, Zhao Y, Luo J, Shao H, Hu X (2011) Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Mater Sci Eng C 31:1602–1608

    Article  CAS  Google Scholar 

  19. Peng Q, Shao H, Hu X, Zhang Y (2015) Role of humidity on the structures and properties of regenerated silk fibers. Prog Nat Sci Mater Int 25:430–436

    Article  CAS  Google Scholar 

  20. Yue X, Zhang F, Wu H, Ming J, Fan Z, Zuo B (2014) A novel route to prepare dry-spun silk fibers from CaCl2–formic acid solution. Mater Lett 128:175–178

    Article  CAS  Google Scholar 

  21. Luo J, Zhang L, Peng Q, Sun M, Zhang Y, Shao H, Hu X (2014) Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 66:319–324

    Article  CAS  Google Scholar 

  22. Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ (2017) Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 8:1387

    Article  Google Scholar 

  23. Gu L, Jiang Y, Hu J (2019) Scalable spider-silk-like Supertough fibers using a Pseudoprotein polymer. Adv Mater 31:e1904311

    Article  Google Scholar 

  24. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6:510–530

    Article  CAS  Google Scholar 

  25. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58:1173–1243

    Article  CAS  Google Scholar 

  26. Zhang CL, Yu SH (2014) Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 43:4423–4448

    Article  CAS  Google Scholar 

  27. Wang X-X, Yu G-F, Zhang J, Yu M, Ramakrishna S, Long Y-Z (2021) Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog Mater Sci 115:100704

    Article  CAS  Google Scholar 

  28. Mishra RK, Mishra P, Verma K, Mondal A, Chaudhary RG, Abolhasani MM, Loganathan S (2018) Electrospinning production of nanofibrous membranes. Environ Chem Lett 17:767–800

    Article  Google Scholar 

  29. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    Article  CAS  Google Scholar 

  30. Jiang SH, Chen YM, Duan GG, Mei CT, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720

    Article  CAS  Google Scholar 

  31. Qian CY, Xin TW, Xiao WS, Zhu HJ, Zhang Q, Liu LL, Cheng RY, Wang Z, Cui WG, Ge ZL (2020) Vascularized silk electrospun fiber for promoting oral mucosa regeneration. NPG Asia Mater 12:39

    Article  CAS  Google Scholar 

  32. Chen D, Narayanan N, Federici E, Yang Z, Zuo X, Gao J, Fang F, Deng M, Campanella OH, Jones OG (2020) Electrospinning induced orientation of protein fibrils. Biomacromolecules 21:2772–2785

    Article  CAS  Google Scholar 

  33. Zhu M, Gu J, He L, Mahar FK, Kim I, Wei K (2019) Fabrication and osteoblastic adhesion behavior of regenerated silk fibroin/PLLA Nanofibrous scaffold by double syringe electrospinning. Fibers Polym 20:1850–1856

    Article  CAS  Google Scholar 

  34. Zhou CJ, Li Y, Yao SW, He JH (2019) Silkworm-based silk fibers by electrospinning. Results Phys 15:102646

    Article  Google Scholar 

  35. Kong N, Wan F, Dai W, Lu Y, Cheng P, Dai J, Li Y-Y, Gong J, Ling S, Yao Y (2020) Bioinspired polypeptide as building blocks for multifunctional material design. Appl Mater Today 20:100683

    Article  Google Scholar 

  36. Dai J, Wang YQ, Wu DH, Wan FJ, Lu Y, Kong N, Li XC, Gong JK, Ling SJ, Yao Y (2020) Biointerface mediates cytoskeletal rearrangement of pancreatic cancer cell and modulates its drug sensitivity. Colloid Interface Sci Commun 35:100250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project funded by China Postdoctoral Science Foundation (No. 2020M681344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leitao Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cao, L. (2021). Spinning Methods Used for Construction of One- and Two-Dimensional Fibrous Protein Materials. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics