Skip to main content

Quantitative Analysis of Cell Surface Expressed, Intracellular, and Internalized Neurotransmitter Receptor Populations in Brain Slices Using Biotinylation

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

  • 643 Accesses

Abstract

Cell surface trafficking and endocytosis of neurotransmitter receptors are important regulatory mechanisms of neurotransmission. Biotinylation of plasma membrane (PM) proteins in brain slices allows their separation from those present in intracellular organelles. An extension of this approach also enables the selective retrieval of proteins endocytosed from the plasma membrane into intracellular compartments. Membrane-impermeable, thiol-cleavable amine-reactive biotinylation reagents (e.g., EZ-link sulfo-NH-SS-biotin) form a stable covalent linkage with primary amino groups of surface-exposed proteins. Following homogenization of brain slices and solubilization of membranes, biotin-labeled proteins can be isolated with avidin (or streptavidin or NeutrAvidin) linked to a solid matrix. Bound biotinylated proteins are released from avidin in the presence of reducing agents (e.g., glutathione or β-mercaptoethanol). Quantitative differences in the molecular composition of biotin-labeled (surface or internalized) and unlabeled (intracellular) protein fractions can be analyzed separately using immunoblotting with target protein-specific antibodies. While many variations of this procedure exist in the literature, in this chapter we describe the biotinylation protocol that we have applied for the investigation of quantitative changes in the cell surface expression and internalization of ionotropic glutamate receptors in acute brain slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Groc L, Choquet D (2020) Linking glutamate receptor movements and synapse function. Science 368:1204

    Article  Google Scholar 

  2. Pickard L, Noël J, Henley JM, Collingridge GL, Molnár E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931

    Article  CAS  Google Scholar 

  3. Pickard L, Noel J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, Molnár E (2001) Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors into hippocampal neuronal plasma membrane. Neuropharmacology 41:700–713

    Article  CAS  Google Scholar 

  4. Dupuis J, Groc L (2020) Surface trafficking of neurotransmitter receptors: from cultured neurons to intact brain preparations. Neuropharmacology 169:107642

    Article  CAS  Google Scholar 

  5. Molnár E (2019) Cell-based enzyme-linked immunosorbent assay (cell-ELISA) analysis of native and recombinant glutamate receptors. Methods Mol Biol 1941:47–54. In: Burger C, Velardo MJ (eds) Glutamate receptors: methods and protocols. Springer, ISBN: 978-1-4939-9077-1, pp 47–54

    Article  Google Scholar 

  6. Ball SM, Atlason PT, Shittu-Balogun OO, Molnár E (2010) Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition. J Neurochem 114:1805–1818

    Article  CAS  Google Scholar 

  7. Boudreau AC, Milovanovic M, Conrad KL, Nelson C, Ferrario CR, Wolf ME (2012) A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments. Curr Protoc Neurosci. Chapter 5:Unit 5.30.1–19

    Google Scholar 

  8. McIlhinney RAJ, Molnár E (1996) Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracelular domains of the ionotropic glutamate receptor subunit GluR1. Biochem J 315:217–225

    Article  CAS  Google Scholar 

  9. McIlhinney RAJ, Molnár E, Atack JR, Whiting PJ (1996) Cell surface expression of the human N-methyl-D-aspartate receptor subunit 1ª requires the co-expression of the NR2A subunit in transfected cells. Neuroscience 70:989–997

    Article  CAS  Google Scholar 

  10. McIlhinney RAJ, Le Bourdellès B, Molnár E, Tricaud N, Streit P, Whiting PJ (1998) Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37:1355–1367

    Article  CAS  Google Scholar 

  11. Gallyas F, Ball SM, Molnár E (2003) Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neuro-Oncol 86:1414–1427

    CAS  Google Scholar 

  12. Atlason PT, Scholefield CL, Eaves RJ, Mayo-Martin B, Jane DE, Molnár E (2010) Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310. Mol Pharmacol 78:1036–1045

    Article  CAS  Google Scholar 

  13. Scholefield CL, Atlason PT, Jane DE, Molnár E (2019) Assembly and trafficking of homomeric and heteromeric kainate receptors with impaired ligand binding sites. Neurochem Res 44:585–599

    Article  CAS  Google Scholar 

  14. Moutin E, Hemonnot A-L, Seube V, Linck N, Ressendren F, Perroy J, Compan V (2020) Procedures for culturing and genetically manipulating murine hippocampal postnatal neurons. Front Syn Neurosci 12:19

    Article  CAS  Google Scholar 

  15. Gladding CM, Fitzjohn SM, Molnár E (2009) Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 61:395–412

    Article  CAS  Google Scholar 

  16. Molnár E (2011) Long-term potentiation in cultured hippocampal neurons. Sem Cell Dev Biol 22:506–513

    Article  Google Scholar 

  17. Lossi L, Merighi A (2018) The use of ex vivo rodent platforms in neuroscience translational research with attention to the 3Rs philosophy. Front Vet Sci 5:164

    Article  Google Scholar 

  18. Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98

    Article  CAS  Google Scholar 

  19. Bayer EA, Wilchek M (1990) Application of avidin-biotin technology to affinity-based separations. J Chromatogr 510:3–11

    Article  CAS  Google Scholar 

  20. Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024

    Article  CAS  Google Scholar 

  21. Gladding CM, Collett VJ, Jia Z, Bashir ZI, Collingridge GL, Molnár E (2009) Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Mol Cell Neurosci 40:267–279

    Article  CAS  Google Scholar 

  22. Thomas-Crusells J, Vieira A, Saarma M, Rivera C (2003) A novel method for monitoring surface membrane trafficking on hippocampal acute slice preparation. J Neurosci Meth 125:159–166

    Article  CAS  Google Scholar 

  23. Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased expression of immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–474

    Article  Google Scholar 

  24. Holman D, Henley JM (2007) A novel method for monitoring the cell surface expression of heteromeric protein complexes in dispersed neurons and acute hippocampal slices. J Neurosci Methods 160:302–308

    Article  CAS  Google Scholar 

  25. Holman D, Feligioni M, Henley JM (2007) Differential redistribution of native AMPA receptor complexes following LTD induction in acute hippocampal slices. Neuropharmacology 52:92–99

    Article  CAS  Google Scholar 

  26. Joshi S, Kapur (2009) Slow intracellular accumulation of GABAA receptor δ subunit is modulated by brain-derived neurotrophic factor. Neuroscience 164:507–519

    Article  CAS  Google Scholar 

  27. Soares C, Lee KFH, Nassrallah W, Béïque J (2013) Differential subcellular targeting of glutamate receptor subtypes during homeostatic plasticity. J Neurosci 33:13547–13559

    Article  CAS  Google Scholar 

  28. Whitehead G, Jo J, Hogg EL, Piers T, Kim D-H, Seaton G, Seok H, Bru-Mercier G, Son GH, Regan P, Hildebrandt L, Waite E, Kim B-C, Kerrigan TL, Kim K, Whitcomb DJ, Collingridge GL, Lightman SL, Cho K (2013) Brain 136:3753–3765

    Article  Google Scholar 

  29. Gabriel LR, Wu S, Melikian HE (2014) Brain slice biotinylation: an ex vivo approach to measure region-specific plasma membrane protein trafficking in adult neurons. J Vis Exp 86:e51240. https://doi.org/10.3791/51240

    Article  CAS  Google Scholar 

  30. Molnár E (2018) Glutamate receptors. In: Choi S (ed) Encyclopedia of signaling molecules, 2nd edn. Springer. Reference, ISBN: 978-3-319-67198-7 (print), 978-3-319-67199-4 (eBook), 978-3-319-67200-7 (print and eBook), pp 2138–2146

    Google Scholar 

  31. Molnár E (2013) Production of antibodies. In: Langton PD (ed) Essential guide to reading biomedical papers: recognising and interpreting best practice. Wiley-Blackwell. ISBN: 978-1-1199-5996-0, pp 105–116

    Google Scholar 

  32. Eguchi K, Velicky P, Hollergschwandtner E, Itakura M, Fukazawa Y, Danzl JG, Shigemoto R (2020) Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions. Front Cell Neurosci 14:63

    Article  CAS  Google Scholar 

  33. Smolders K, Lombaert N, Valkenborg D, Baggerman G, Arckens L (2015) An effective plasma membrane proteomics approach for small tissue samples. Sci Rep 5:10917

    Article  CAS  Google Scholar 

  34. Qiao R, Li S, Zjou M, Chen P, Liu Z, Tang M, Zhou J (2017) In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience 353:119–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Clare M. Gladding for adapting the cell surface biotinylation technique for the investigation of tryrosine dephosporylation of AMPA receptors in mGluR-LTD and NMDAR-LTD using hippocampal slices [21]. This research was supported by an Innovate UK (UK Research and Innovation) Knowledge Transfer Partnership grant (Ref No KTP 12333, 2020 - 5146) and the Biotechnology and Biological Sciences Research Council, UK (Grant BB/J015938/1).

Conflict of Interest

E.M. is a Scientific Advisory Board member of Hello Bio [http://www.hellobio.com].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elek Molnár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molnár, E. (2021). Quantitative Analysis of Cell Surface Expressed, Intracellular, and Internalized Neurotransmitter Receptor Populations in Brain Slices Using Biotinylation. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics